The Orthogonal Branching Problem for Symplectic Monogenics

被引:1
|
作者
Eelbode, David [1 ]
Muarem, Guner [1 ]
机构
[1] Campus Middelheim,Middelheimlaan 1,MG 312, B-2020 Antwerp, Belgium
关键词
Symplectic Clifford analysis; Dirac operator; Branching; Transvector algebras; Representation theory; HOWE DUALITY; LIE-GROUPS;
D O I
10.1007/s00006-022-01215-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the sp (2m)-invariant Dirac operator D-s which acts on symplectic spinors, from an orthogonal point of view. By this we mean that we will focus on the subalgebra so(m) subset of sp (2m), as this will allow us to derive branching rules for the space of 1-homogeneous polynomial solutions for the operator D-s (hence generalising the classical Fischer decomposition in harmonic analysis for a vector variable in R-m). To arrive at this result we use techniques from representation theory, including the transvector algebra Z(sp(4), so(4)) and tensor products of Verma modules.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] The Orthogonal Branching Problem for Symplectic Monogenics
    David Eelbode
    Guner Muarem
    Advances in Applied Clifford Algebras, 2022, 32
  • [2] Branching Symplectic Monogenics Using a Mickelsson-Zhelobenko Algebra
    Eelbode, David
    Muarem, Guner
    OPERATOR AND MATRIX THEORY, FUNCTION SPACES, AND APPLICATIONS, IWOTA 2022, 2024, 295 : 175 - 187
  • [3] Orthogonal basis for spherical monogenics by step two branching
    Lavicka, R.
    Soucek, V.
    Van Lancker, P.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (02) : 161 - 186
  • [4] Orthogonal basis for spherical monogenics by step two branching
    R. Lávička
    V. Souček
    P. Van Lancker
    Annals of Global Analysis and Geometry, 2012, 41 : 161 - 186
  • [5] Complete Orthogonal Appell Systems for Spherical Monogenics
    Lavicka, R.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (02) : 477 - 489
  • [6] Complete Orthogonal Appell Systems for Spherical Monogenics
    R. Lávička
    Complex Analysis and Operator Theory, 2012, 6 : 477 - 489
  • [7] On 3D orthogonal prolate spheroidal monogenics
    Morais, J.
    Nguyen, H. M.
    Kou, K. I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (04) : 635 - 648
  • [8] On orthogonal monogenics in oblate spheroidal domains and recurrence formulae
    Nguyen, H. M.
    Guerlebeck, K.
    Morais, J.
    Bock, S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (07) : 513 - 527
  • [9] On the spectral problem of N=4 SYM with orthogonal or symplectic gauge group
    Caputa, Pawel
    Kristjansen, Charlotte
    Zoubos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [10] The period-index problem of the canonical gerbe of symplectic and orthogonal bundles
    Biswas, Indranil
    Coskun, Emre
    Dhillon, Ajneet
    JOURNAL OF ALGEBRA, 2016, 446 : 400 - 425