Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions

被引:224
|
作者
Radyushkin, A. V. [1 ,2 ]
机构
[1] Old Dominion Univ, Norfolk, VA 23529 USA
[2] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA
关键词
RENORMALIZABILITY; SCATTERING; QCD;
D O I
10.1103/PhysRevD.96.034025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that quasi-parton distribution functions (quasi-PDFs) may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large p(3) greater than or similar to 3 GeV momenta to get reasonably close to the PDF limit. As an alternative approach, we propose using pseudo-PDFs P(x, z(3)(2)) that generalize the light-front PDFs onto spacelike intervals and are related to Ioffe-time distributions M(nu, z(3)(2)) the functions of the Ioffe time nu = p(3)z(3) and the distance parameter z(3)(2) with respect to which it displays perturbative evolution for small z(3). In this form, one may divide out the z(3)(2) dependence coming from the primordial rest-frame distribution and from the problematic factor due to lattice renormalization of the gauge link. The nu dependence remains intact and determines the shape of PDFs.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Perturbative renormalization of quasi-parton distribution functions
    Constantinou, Martha
    Panagopoulos, Haralambos
    [J]. PHYSICAL REVIEW D, 2017, 96 (05)
  • [2] Quasi-parton distribution functions: A study in the diquark spectator model
    Gamberg, Leonard
    Kang, Zhong-Bo
    Vitev, Ivan
    Xing, Hongxi
    [J]. PHYSICS LETTERS B, 2015, 743 : 112 - 120
  • [3] Parton distribution functions from Ioffe time pseudo-distributions
    Joo, Balint
    Karpie, Joseph
    Orginos, Kostas
    Radyushkin, Anatoly
    Richards, David
    Zafeiropoulos, Savvas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [4] Relation between transverse momentum dependent distribution functions and parton distribution functions in the covariant parton model approach
    Efremov, A. V.
    Schweitzer, P.
    Teryaev, O. V.
    Zavada, P.
    [J]. PHYSICAL REVIEW D, 2011, 83 (05):
  • [5] Parton distribution functions
    Soper, DE
    [J]. NUCLEAR PHYSICS B, 1997, : 69 - 80
  • [6] Parton distribution functions in the context of parton showers
    Nagy, Zolton
    Soper, Davison E.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [7] Parton distribution functions in the context of parton showers
    Zoltán Nagy
    Davison E. Soper
    [J]. Journal of High Energy Physics, 2014
  • [8] Evolution of parton showers and parton distribution functions
    Nagy, Zoltan
    Soper, Davison E.
    [J]. PHYSICAL REVIEW D, 2020, 102 (01):
  • [9] Parton distribution functions of the proton
    Perez, Emmanuelle
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2008, 184 : 43 - 46
  • [10] Impressions of Parton Distribution Functions
    俞杨
    Craig DRoberts
    [J]. Chinese Physics Letters, 2024, 41 (12) : 44 - 50