Mimic of the Cellular Antioxidant Defense System for a Sustainable Regeneration of Nicotinamide Adenine Dinucleotide (NAD)

被引:21
|
作者
Jo, Seong-Min [1 ]
Zhang, Kai A., I [1 ,2 ]
Wurm, Frederik R. [1 ]
Landfester, Katharina [1 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
关键词
silica; NAD regeneration; biomimetic nanoreactors; cell mimics; antioxidant nanoreactors; SUPEROXIDE-DISMUTASE;
D O I
10.1021/acsami.0c05588
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The prolonged use of enzymes under oxidative stress is a major challenge in enabling effective enzymatic reaction pathways. Herein, we report a biomimetic antioxidant defensive strategy capable of providing adequate protection of enzymes against superoxide-mediated oxidation. Superoxide dismutase (SOD) and catalase (CAT) were chosen as scavengers and covalently encapsulated into silica nanoreactors, together with glucose dehydrogenase (GDH), which simultaneously should produce the coenzyme nicotinamide adenine dinucleotide (NADH, reduced form). By the enzymatic reactions of SOD and CAT, the interior of silica nanoreactors becomes a "ROS safe zone" to protect the glucose-dependent NADH production of coencapsulated GDH. We further combined this protected NADH-producing module with photocatalytic nanoparticles that enable the light-triggered oxidation of NADH back to NAD(+) (oxidized form). In combination, these two modules allow interconversion between NAD(+) and NADH by the addition of glucose or by light irradiation (LED lamp or sunlight). This protection and regeneration strategy is a versatile tool for enzyme applications for biological reactors, catalysis, or prototypes of artificial organelles or building blocks that contains fragile biomolecules and rely on the coenzyme NAD(+)/NADH.
引用
收藏
页码:25625 / 25632
页数:8
相关论文
共 50 条
  • [1] β-Nicotinamide Adenine Dinucleotide (β-Nad) Is A Bronchodilator
    Jurastow, I. G.
    Krasteva-Christ, G.
    Von der Beck, D.
    Klepetko, W.
    Guenther, A.
    Kummer, W.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189
  • [2] Therapeutic potential of nicotinamide adenine dinucleotide (NAD)
    Arenas-Jal, Marta
    Sune-Negre, J. M.
    Garcia-Montoya, Encarna
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2020, 879
  • [3] β-Nicotinamide Adenine Dinucleotide (β-Nad): A New Bronchodilator
    Jurastow, I. G.
    Schlenz, H.
    Krasteva-Christ, G.
    Kummer, W.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187
  • [4] An automated assay for nicotinamide adenine dinucleotide (NAD+).
    Byers, S
    Anderson, D
    Brobst, D
    Cowan, F
    FASEB JOURNAL, 1998, 12 (04): : A126 - A126
  • [5] Automated assay for nicotinamide adenine dinucleotide (NAD+)
    Byers, S
    Anderson, D
    Brobst, D
    Cowan, F
    JOURNAL OF APPLIED TOXICOLOGY, 2000, 21 : S19 - S22
  • [6] NAD+ (nicotinamide adenine dinucleotide, oxidized form)
    Ferro, Valentina
    Moco, Sofia
    TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2025, 36 (03): : 292 - 293
  • [7] A chemical synthesis of nicotinamide adenine dinucleotide (NAD+)
    Lee, J
    Churchil, H
    Choi, WB
    Lynch, JE
    Roberts, FE
    Volante, RP
    Reider, PJ
    CHEMICAL COMMUNICATIONS, 1999, (08) : 729 - 730
  • [8] NICOTINAMIDE-ADENINE DINUCLEOTIDE (NAD) AS A CELLULAR REGULATOR OF RENAL PHOSPHATE (PI) TRANSPORT
    KEMPSON, SA
    OU, SYL
    DOUSA, TP
    KIDNEY INTERNATIONAL, 1981, 19 (01) : 112 - 112
  • [9] ELECTROCHEMICAL REGENERATION OF NICOTINAMIDE ADENINE-DINUCLEOTIDE
    AIZAWA, M
    COUGHLIN, RW
    CHARLES, M
    BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 385 (02) : 362 - 370
  • [10] Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD)
    Keisuke Yaku
    Keisuke Okabe
    Maryam Gulshan
    Kiyoshi Takatsu
    Hiroshi Okamoto
    Takashi Nakagawa
    Scientific Reports, 9