Fooling Polytopes

被引:0
|
作者
O'Donnell, Ryan [1 ]
Servedio, Rocco A. [2 ]
Tan, Li-Yang [3 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Columbia Univ, Dept Comp Sci, 500 West 120 St,Room 450,MC0401, New York, NY 10027 USA
[3] Stanford Univ, Gates Comp Sci Bldg,353 Jane Stanford Way, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Polytopes; pseudorandom generators; Littlewood-Offord; central limit theorems; LITTLEWOOD-OFFORD PROBLEM; LEARNING INTERSECTIONS; PSEUDORANDOM GENERATORS; HALFSPACES; HARDNESS; BOUNDS; INDEPENDENCE; SUMS;
D O I
10.1145/3460532
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give a pseudorandom generator that fools m-facet polytopes over {0, 1}(n) with seed length polylog(m) . log n. The previous best seed length had superlinear dependence on m.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Fooling Polytopes
    O'Donnell, Ryan
    Servedio, Rocco A.
    Tan, Li-Yang
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 614 - 625
  • [2] No fooling
    Wallace, J
    LASER FOCUS WORLD, 2001, 37 (10): : S3 - S3
  • [3] NO FOOLING
    WELSCH, RL
    NATURAL HISTORY, 1992, (05) : 14 - 15
  • [4] No fooling
    Motte, Warren
    FRENCH REVIEW, 2020, 93 (03): : 212 - 213
  • [5] Fooling the monsters, fooling themselves - Running with Coyote
    Bruchac, J
    PARABOLA-MYTH TRADITION AND THE SEARCH FOR MEANING, 2001, 26 (03): : 60 - 63
  • [6] Conjuring Deceptions: Fooling the Eye or Fooling the Mind?
    Ekroll, Vebjorn
    Wagemans, Johan
    TRENDS IN COGNITIVE SCIENCES, 2016, 20 (07) : 486 - 489
  • [7] FOOLING COMPUTER
    不详
    TECHNOLOGY REVIEW, 1971, 73 (06): : 66 - &
  • [8] IS RUSSIA FOOLING
    SURMAN, JEW
    SPACEFLIGHT, 1965, 7 (06): : 210 - &
  • [9] FOOLING THE BRAIN
    MILLER, J
    NEW SCIENTIST, 1991, 131 (1779) : 54 - 54
  • [10] FOOLING FLAMINGOS
    BASS, TA
    AUDUBON, 1985, 87 (04) : 90 - &