Constraints on direction-dependent cosmic birefringence from Planck polarization data

被引:33
|
作者
Contreras, Dagoberto [1 ]
Boubel, Paula [1 ,2 ]
Scott, Douglas [1 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada
[2] Univ Guelph, 50 Stone Rd E, Guelph, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CMBR polarisation; CMBR theory; cosmology of theories beyond the SM; STATISTICS;
D O I
10.1088/1475-7516/2017/12/046
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cosmic birefringence is the process that rotates the plane of polarization by an amount, alpha, as photons propagate through free space. Such an effect arises in parity-violating extensions to the electromagnetic sector, such as the Chern-Simons term common in axion models, quintessence models, or Lorentz-violating extensions to the standard model. Most studies consider the monopole of this rotation, but it is also possible for the effect to have spatial anisotropies. Paying particular attention to large scales, we implement a novel pixel-based method to extract the spherical harmonics for L <= 30 and a pseudo-C L method for L > 30. Our results are consistent with no detection and we set 95% upper limits on the amplitude of a scale-invariant power spectrum of L (L + 1) C-L/2 pi < [2.2 (stat.) +/- 0.7 (syst.)] x 10(-5) = [0.07 (stat.)+/- 0.02 (syst.)] deg(2), on par with previous constraints. This implies specific limits on the dipole and quadrupole amplitudes to be root C-1/4 pi less than or similar to 0.degrees 2 and root C-2/4 pi less than or similar to 0.degrees 1, at 95% CL, respectively, improving previous constraints by an order of magnitude. We further constrain a model independent M = 0 quadrupole in an arbitrary direction to be alpha(2) 0 = 0.degrees 02 +/- 0.degrees 21, with an unconstrained direction. However, we find an excess of dipolar power with an amplitude root C-1/4 pi - 0.degrees 32 +/- 0.degrees 10 (stat.) +/- 0.degrees 08 (syst.), in the direction (l; b) = (295 degrees; 17 degrees) +/- (22 degrees; 17 degrees) (stat.) +/- (5 degrees; 16 degrees) (syst.), larger than 1.4% of simulations with no birefringence. We attribute part of this signal to the contamination of residual foregrounds not accounted for in our simulations, although this should be further investigated.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Improved constraints on cosmic birefringence from the WMAP and Planck cosmic microwave background polarization data
    Eskilt, Johannes R.
    Komatsu, Eiichiro
    PHYSICAL REVIEW D, 2022, 106 (06)
  • [2] New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data
    Minami, Yuto
    Komatsu, Eiichiro
    PHYSICAL REVIEW LETTERS, 2020, 125 (22)
  • [4] First CMB constraints on direction-dependent cosmological birefringence from WMAP-7
    Gluscevic, Vera
    Hanson, Duncan
    Kamionkowski, Marc
    Hirata, Christopher M.
    PHYSICAL REVIEW D, 2012, 86 (10)
  • [5] Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data
    Durakovic, Amel
    Hunt, Paul
    Mukherjee, Suvodip
    Sarkar, Subir
    Souradeep, Tarun
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (02):
  • [6] Cosmic Birefringence from the Planck Data Release 4
    Diego-Palazuelos, P.
    Eskilt, J. R.
    Minami, Y.
    Tristram, M.
    Sullivan, R. M.
    Banday, A. J.
    Barreiro, R. B.
    Eriksen, H. K.
    Gorski, K. M.
    Keskitalo, R.
    Komatsu, E.
    Martinez-Gonzalez, E.
    Scott, D.
    Vielva, P.
    Wehus, I. K.
    PHYSICAL REVIEW LETTERS, 2022, 128 (09)
  • [7] Planck constraints on cross-correlations between anisotropic cosmic birefringence and CMB polarization
    Bortolami, M.
    Billi, M.
    Gruppuso, A.
    Natoli, P.
    Pagano, L.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (09):
  • [8] Planck constraints on cosmic birefringence and its cross-correlation with the CMB
    Zagatti, G.
    Bortolami, M.
    Gruppuso, A.
    Natoli, P.
    Pagano, L.
    Fabbian, G.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05):
  • [9] Searching for anisotropic cosmic birefringence with polarization data from SPTpol
    Bianchini, F.
    Wu, W. L. K.
    Ade, P. A. R.
    Anderson, A. J.
    Austermann, J. E.
    Avva, J. S.
    Balkenhol, L.
    Baxter, E.
    Beall, J. A.
    Bender, A. N.
    Benson, B. A.
    Bleem, L. E.
    Carlstrom, J. E.
    Chang, C. L.
    Chaubal, P.
    Chiang, H. C.
    Chou, T. L.
    Citron, R.
    Moran, C. Corbett
    Crawford, T. M.
    Crites, A. T.
    de Haan, T.
    Dobbs, M. A.
    Everett, W.
    Gallicchio, J.
    George, E. M.
    Gilbert, A.
    Gupta, N.
    Halverson, N. W.
    Henning, J. W.
    Hilton, G. C.
    Holder, G. P.
    Holzapfel, W. L.
    Hrubes, J. D.
    Huang, N.
    Hubmayr, J.
    Irwin, K. D.
    Knox, L.
    Lee, A. T.
    Li, D.
    Lowitz, A.
    Manzotti, A.
    McMahon, J. J.
    Meyer, S. S.
    Millea, M.
    Mocanu, L. M.
    Montgomery, J.
    Nadolski, A.
    Natoli, T.
    Nibarger, J. P.
    PHYSICAL REVIEW D, 2020, 102 (08):
  • [10] Cosmological birefringence constraints from CMB and astrophysical polarization data
    Galaverni, M.
    Gubitosi, G.
    Paci, F.
    Finelli, F.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (08):