Fast Nonlinear Model Predictive Control Using LSTM Networks: A Model Linearisation Approach

被引:1
|
作者
Zarzycki, Krzysztof [1 ]
Lawrynczuk, Maciej [1 ]
机构
[1] Warsaw Univ Technol, Fac Elect & Informat Technol, Inst Control & Computat Engn, Ul Nowowiejska 15-19, PL-00665 Warsaw, Poland
关键词
D O I
10.1109/MED54222.2022.9837211
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work describes a fast Model Predictive Control (MPC) algorithm in which Long Short-Term Memory (LSTM) networks are used to model dynamical processes. To obtain a computationally simple quadratic optimisation MPC task, a linear approximation of the model is repeatedly determined on-line using an original linearisation method that is specially tailored for the LSTM model. For a benchmark polymerisation process, it is shown that the described approach results in more precise prediction and better control quality than the classical model linearisation method. It is also shown that the described algorithm gives very similar control quality to that observed in MPC with nonlinear optimisation.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] A combined approach to nonlinear model predictive control of fast systems
    Tamimi, Jasem
    Li, Pu
    [J]. JOURNAL OF PROCESS CONTROL, 2010, 20 (09) : 1092 - 1102
  • [2] Nonlinear model predictive control using neural networks
    Piché, S
    Sayyar-Rodsari, B
    Johnson, D
    Gerules, M
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2000, 20 (03): : 53 - 62
  • [3] Voltage control in distribution networks using fast model predictive control
    Kechroud, A.
    Flores, J. F. C.
    Kling, W. L.
    [J]. IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [4] A modularization approach for nonlinear model predictive control of distributed fast systems
    Dender, Jan
    Kannan, Somasundar
    Mendez, Miguel Angel Olivares
    Voos, Holger
    [J]. 2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 292 - 297
  • [5] Nonlinear model identification and adaptive model predictive control using neural networks
    Akpan, Vincent A.
    Hassapis, George D.
    [J]. ISA TRANSACTIONS, 2011, 50 (02) : 177 - 194
  • [6] Exploring the potentiality of using multiple model approach in nonlinear model predictive control
    Trierweiler, JO
    Secchi, AR
    [J]. NONLINEAR MODEL PREDICTIVE CONTROL, 2000, 26 : 191 - 203
  • [7] Nonlinear Model Predictive Congestion Control for Networks
    Han, Cunwu
    Li, Mengqi
    Jing, Yuanwei
    Liu, Lei
    Pang, Zhonghua
    Sun, Dehui
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 552 - 557
  • [8] Fast nonlinear model predictive control of a chemical reactor: a random shooting approach
    Bakarac, Peter
    Kvasnica, Michal
    [J]. ACTA CHIMICA SLOVACA, 2018, 11 (02): : 175 - 181
  • [9] Fast nonlinear model predictive control of gasoline engines
    Ferreau, H. J.
    Lorini, G.
    Diehl, M.
    [J]. PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-4, 2006, : 1690 - 1695
  • [10] Parametric Approach to Nonlinear Model Predictive Control
    Herceg, M.
    Kvasnica, M.
    Fikar, M.
    [J]. NONLINEAR MODEL PREDICTIVE CONTROL: TOWARDS NEW CHALLENGING APPLICATIONS, 2009, 384 : 381 - 389