Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery

被引:173
|
作者
Lin, Chun-Er [1 ]
Zhang, Hong [2 ]
Song, You-Zhi [1 ]
Zhang, Yin [1 ]
Yuan, Jia-Jia [1 ]
Zhu, Bao-Ku [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, Key Lab Macromol Synth & Functionalizat MOE, ERC Membrane & Water Treatment MOE, Hangzhou 310027, Zhejiang, Peoples R China
[2] Sun Yat Sen Univ, Minist Educ, Key Lab High Performance Polymer Based Composites, Key Lab Polymer Composite & Funct Mat, Guangzhou 510275, Guangdong, Peoples R China
关键词
GEL POLYMER ELECTROLYTES; NONWOVEN SEPARATORS; HIGH-ENERGY; PERFORMANCE; MEMBRANE; ANODE; FABRICATION; CELLULOSE; CATHODE; CELL;
D O I
10.1039/c7ta08702k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The improvement of lithium ion transport properties, along with the ever-increasing demand for highpower density, is key to boosting the development of lithium-ion batteries. Here, we present a new class of carboxylated polyimide (PI) separator, which can be fabricated via an alkali treatment-based surface modification. The -COOH groups with unshared electron pairs were proposed to contribute to the desolvation of lithium ions and an increase in the lithium ion transport rate. Notably, the modification did not destroy the microstructure of the PI separator, and thus the effect of -COOH groups on the lithium ion transport properties was clearly demonstrated in this work. The result showed that the carboxylated PI separator was conducive to improving the lithium ion transference number (up to 0.87), which is four times higher than that for the original PI separator. More importantly, for the first time, the -COOH group was calculated to increase the lithium ion transport rate by more than six times. Benefiting from its high lithium ion transference number and slightly increased ionic conductivity, the cell assembled with the carboxylated PI separator achieved a better cycle performance and higher rate capability than that with the original PI separator.
引用
收藏
页码:991 / 998
页数:8
相关论文
共 50 条
  • [1] Amino-Functionalized Al2O3 Particles Coating Separator with Excellent Lithium-Ion Transport Properties for High-Power Density Lithium-Ion Batteries
    Zhang, Hui
    Sheng, Lei
    Bai, Yaozong
    Song, Shangjun
    Liu, Gaojun
    Xue, Hairong
    Wang, Tao
    Huang, Xianli
    He, Jianping
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (11)
  • [2] Novel composite separator for high power density lithium-ion battery
    Zhu, Gaolong
    Jing, Xiaopeng
    Chen, Dongjiang
    He, Weidong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (04) : 2917 - 2924
  • [3] Development of a high-power lithium-ion battery
    Jansen, AN
    Kahaian, AJ
    Kepler, KD
    Nelson, PA
    Amine, K
    Dees, DW
    Vissers, DR
    Thackeray, MM
    JOURNAL OF POWER SOURCES, 1999, 81 : 902 - 905
  • [4] Cross-linked cellulose/carboxylated polyimide nanofiber separator for lithium-ion battery application
    Deng, Jianhui
    Cao, Dongqing
    Yang, Xiaoqing
    Zhang, Guoqing
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [5] Performance of Cathode Material of High-Power Lithium-Ion Battery
    Chen, Jiaxing
    Su, Zilong
    Zhao, Ting
    Pu, Ganggang
    Li, Ang
    Wang, Lve
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2023, 47 (12): : 1756 - 1764
  • [6] Lithium-Ion Battery with High Energy and Excellent Safety
    朱盛榕
    热能动力工程, 2020, 35 (07) : 9 - 9
  • [7] Global Patent Analysis of Power Lithium-Ion Battery Separator
    Li, Na
    Guan, Quan
    Tan, Siming
    Wang, Yunfei
    Chu, Zhiyong
    Liu, Jin
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2015, : 957 - 961
  • [8] Study on preparation of polyacrylonitrile/polyimide composite lithium-ion battery separator by electrospinning
    Lin Li
    Ping Liu
    Qin Shan Fu
    Yong Gong
    Shi Rong Zhang
    Heng Ji He
    Jian Chen
    Journal of Materials Research, 2019, 34 : 642 - 651
  • [9] Study on preparation of polyacrylonitrile/polyimide composite lithium-ion battery separator by electrospinning
    Li, Lin
    Liu, Ping
    Fu, Qin Shan
    Gong, Yong
    Zhang, Shi Rang
    He, Heng Ji
    Chen, Jian
    JOURNAL OF MATERIALS RESEARCH, 2019, 34 (04) : 642 - 651
  • [10] Flexible, high-wettability and thermostable separator based on fluorinated polyimide for lithium-ion battery
    Tan, Jinyan
    Kong, Lingyi
    Qiu, Zhiming
    Yan, Yurong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (11) : 3363 - 3373