Multi-Contrast MRI Image Synthesis Using Switchable Cycle-Consistent Generative Adversarial Networks

被引:16
|
作者
Zhang, Huixian [1 ,2 ]
Li, Hailong [1 ,2 ,3 ,4 ]
Dillman, Jonathan R. [1 ,2 ,3 ,5 ]
Parikh, Nehal A. [4 ,6 ]
He, Lili [1 ,2 ,3 ,4 ,5 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Imaging Res Ctr, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Med Ctr, Dept Radiol, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Ctr Artificial Intelligence Imaging Res, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Prevent Neurodev Disorders, Perinatal Inst, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Radiol, Coll Med, Cincinnati, OH 45229 USA
[6] Univ Cincinnati, Dept Pediat, Coll Med, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; CycleGAN; deep learning; MR imaging; pediatric brain; switchable CycleGAN; CONVOLUTIONAL NEURAL-NETWORK; CT IMAGE; DEEP;
D O I
10.3390/diagnostics12040816
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Multi-contrast MRI images use different echo and repetition times to highlight different tissues. However, not all desired image contrasts may be available due to scan-time limitations, suboptimal signal-to-noise ratio, and/or image artifacts. Deep learning approaches have brought revolutionary advances in medical image synthesis, enabling the generation of unacquired image contrasts (e.g., T1-weighted MRI images) from available image contrasts (e.g., T2-weighted images). Particularly, CycleGAN is an advanced technique for image synthesis using unpaired images. However, it requires two separate image generators, demanding more training resources and computations. Recently, a switchable CycleGAN has been proposed to address this limitation and successfully implemented using CT images. However, it remains unclear if switchable CycleGAN can be applied to cross-contrast MRI synthesis. In addition, whether switchable CycleGAN is able to outperform original CycleGAN on cross-contrast MRI image synthesis is still an open question. In this paper, we developed a switchable CycleGAN model for image synthesis between multi-contrast brain MRI images using a large set of publicly accessible pediatric structural brain MRI images. We conducted extensive experiments to compare switchable CycleGAN with original CycleGAN both quantitatively and qualitatively. Experimental results demonstrate that switchable CycleGAN is able to outperform CycleGAN model on pediatric MRI brain image synthesis.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks
    Dar, Salman U. H.
    Yurt, Mahmut
    Karacan, Levent
    Erdem, Aykut
    Erdem, Erkut
    Cukur, Tolga
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) : 2375 - 2388
  • [2] Image synthesis in contrast MRI based on super resolution reconstruction with multi-refinement cycle-consistent generative adversarial networks
    Wu, Kun
    Qiang, Yan
    Song, Kai
    Ren, Xueting
    Yang, WenKai
    Zhang, Wanjun
    Hussain, Akbar
    Cui, Yanfen
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (05) : 1215 - 1228
  • [3] Image synthesis in contrast MRI based on super resolution reconstruction with multi-refinement cycle-consistent generative adversarial networks
    Kun Wu
    Yan Qiang
    Kai Song
    Xueting Ren
    WenKai Yang
    Wanjun Zhang
    Akbar Hussain
    Yanfen Cui
    [J]. Journal of Intelligent Manufacturing, 2020, 31 : 1215 - 1228
  • [4] Image Synthesis in Multi-Contrast MRI with Deep Convolutional Generative Adversarial Networks
    Kawahara, D.
    Ozawa, S.
    Saito, A.
    Miki, K.
    Murakami, Y.
    Kimura, T.
    Nagata, Y.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E160 - E160
  • [5] MRI Image Harmonization using Cycle-Consistent Generative Adversarial Network
    Modanwal, Gourav
    Vellal, Adithya
    Buda, Mateusz
    Mazurowski, Maciej A.
    [J]. MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [6] Generative Adversarial Training for MRA Image Synthesis Using Multi-contrast MRI
    Olut, Sahin
    Sahin, Yusuf H.
    Demir, Ugur
    Unal, Gozde
    [J]. PREDICTIVE INTELLIGENCE IN MEDICINE, 2018, 11121 : 147 - 154
  • [7] Unpaired Multi-contrast MR Image Synthesis Using Generative Adversarial Networks
    Sohail, Muhammad
    Riaz, Muhammad Naveed
    Wu, Jing
    Long, Chengnian
    Li, Shaoyuan
    [J]. SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2019, 2019, 11827 : 22 - 31
  • [8] Normalization of breast MRIs using cycle-consistent generative adversarial networks
    Modanwal, Gourav
    Vellal, Adithya
    Mazurowski, Maciej A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208 (208)
  • [9] Unsupervised Cycle-Consistent Generative Adversarial Networks for Pan Sharpening
    Zhou, Huanyu
    Liu, Qingjie
    Weng, Dawei
    Wang, Yunhong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Prior-Guided Image Reconstruction for Accelerated Multi-Contrast MRI via Generative Adversarial Networks
    Dar, Salman U. H.
    Yurt, Mahmut
    Shahdloo, Mohammad
    Ildiz, Muhammed Emrullah
    Tinaz, Berk
    Cukur, Tolga
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (06) : 1072 - 1087