WAVE DYNAMICS IN THE EXTENDED FORCED KORTEWEG-DE VRIES EQUATION

被引:0
|
作者
Kapitula, Todd [1 ]
De Jong, Nate [1 ]
Plaisier, Katelyn [1 ]
机构
[1] Calvin Coll, Dept Math & Stat, Grand Rapids, MI 49546 USA
基金
美国国家科学基金会;
关键词
Korteweg-de Vries; Galerkin approximation; Hamiltonian system; SOLITARY WAVES; GRAVITY-WAVES; 2-LAYER FLUID; KDV EQUATION; STABILITY; FLOW;
D O I
10.1137/10080381X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The extended forced Korteweg-de Vries equation (efKdV) is a mathematical model for simulating the interaction of a shallow layer of fluid with external forcing agents. Herein we consider the dynamics of the efKdV when the forcing is assumed to be small and spatially periodic with a time-periodic variation of the phase. We show that a good heuristic understanding of the dynamics for a certain class of initial data can be found by studying a one-degree-of-freedom Hamiltonian system. One feature associated with this Hamiltonian system is that if the phase varies slowly with time, then to leading order the dynamics for the resonant solutions are governed by the forced nonlinear pendulum equation. Furthermore, we show that resonant solutions can correspond to waves which are trapped, i.e., waves which do not travel but instead oscillate. The theory is illustrated by numerical simulations.
引用
收藏
页码:811 / 828
页数:18
相关论文
共 50 条
  • [1] Solitons for a Forced Extended Korteweg-de Vries Equation with Variable Coefficients in Atmospheric Dynamics
    Li, Min
    Xiao, Jing-Hua
    Wang, Ming
    Wang, Yu-Feng
    Tian, Bo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (3-4): : 235 - 244
  • [2] Solitary water wave interactions for the forced Korteweg-de Vries equation
    Flamarion, Marcelo, V
    Ribeiro-Jr, Roberto
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [3] Asymptotic solitons of the extended Korteweg-de Vries equation
    Marchant, TR
    PHYSICAL REVIEW E, 1999, 59 (03): : 3745 - 3748
  • [4] Soliton interaction for the extended Korteweg-de Vries equation
    Marchant, TR
    Smyth, NF
    IMA JOURNAL OF APPLIED MATHEMATICS, 1996, 56 (02) : 157 - 176
  • [5] Soliton interaction for the extended Korteweg-de Vries equation
    Marchant, T.R.
    Smyth, N.F.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1996, 56 (02): : 157 - 176
  • [6] Asymptotic solution of the extended Korteweg-de Vries equation
    Marchant, T.R.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-3): : 3745 - 3752
  • [7] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [8] Interaction of a solitary wave with an external force in the extended Korteweg-de Vries equation
    Grimshaw, R
    Pelinovsky, E
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2409 - 2419
  • [9] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [10] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47