Oscillation patterns in horseradish peroxidase (HRP)-catalyzed oxidation of indole-3-acetic acid (IAA) at neutral pH were studied using computer simulation. Under certain conditions, such as the presence of a reaction promoter and continuous intake of oxygen from the gaseous phase, the simulated system exhibits damped oscillations of the concentrations of oxygen in the aqueous phase, [O-2](aq), and of all the reaction intermediates. The critical concentration of oxygen in aqueous phase, [O-2](cr)(aq), was used to describe the nature of the oscillations. The critical concentration is the concentration at which the system abruptly changes its properties. If [O-2](aq) is higher than [O-2](cr)(aq) then the reaction develops as an avalanche, otherwise, the reaction stops. The nature of oscillations is accounted for by the interaction of two processes: the consumption/accumulation of oxygen and the accumulation/consumption of reaction intermediates. Oscillations are always damped. Neither HRP or umbelliferone (Umb) deactivation nor IAA consumption can account for the damping. The nature of the damping is determined by the termination reactions of free radical intermediates and ROOH. The three major parameters of oscillations: period of oscillations, initial amplitude of oscillations and the rate of damping were studied as functions of: (i) oxygen concentration in the gaseous phase, (ii) initial oxygen concentration in aqueous phase, (iii) the concentration of IAA and (iv) the initial concentration of HRP. (C) 1998 Published by Elsevier Science B.V. All rights reserved.