Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis

被引:140
|
作者
Nugent, Timothy [1 ]
Jones, David T. [1 ]
机构
[1] UCL, Dept Comp Sci, Bioinformat Grp, London WC1E 6BT, England
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
structural bioinformatics; protein modeling; compressed sensing; amino acid contacts; INVERSE COVARIANCE ESTIMATION; RESIDUE CONTACTS; INFORMATION; TOPOLOGY; FAMILIES; MAPS;
D O I
10.1073/pnas.1120036109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new de novo protein structure prediction method for transmembrane proteins (FILM3) is described that is able to accurately predict the structures of large membrane proteins domains using an ensemble of two secondary structure prediction methods to guide fragment selection in combination with a scoring function based solely on correlated mutations detected in multiple sequence alignments. This approach has been validated by generating models for 28 membrane proteins with a diverse range of complex topologies and an average length of over 300 residues with results showing that TM-scores > 0.5 can be achieved in almost every case following refinement using MODELLER. In one of the most impressive results, a model of mitochondrial cytochrome c oxidase polypeptide I was obtained with a TM-score > 0.75 and an rmsd of only 5.7 angstrom over all 514 residues. These results suggest that FILM3 could be applicable to a wide range of transmembrane proteins of as-yet-unknown 3D structure given sufficient homologous sequences.
引用
收藏
页码:E1540 / E1547
页数:8
相关论文
共 27 条
  • [1] The dual role of fragments in fragment-assembly methods for de novo protein structure prediction
    Handl, Julia
    Knowles, Joshua
    Vernon, Robert
    Baker, David
    Lovell, Simon C.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2012, 80 (02) : 490 - 504
  • [2] On heuristic bias in fragment-assembly methods for protein structure prediction
    Handl, Julia
    Garza-Fabre, Mario
    Kandathil, Shaun
    Lovell, Simon C.
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1652 - 1656
  • [3] A reversible fragment assembly method for de novo protein structure prediction
    Chikenji, G
    Fujitsuka, Y
    Takada, S
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (13): : 6895 - 6903
  • [4] De novo protein structure prediction by dynamic fragment assembly and conformational space annealing
    Lee, Juyong
    Lee, Jinhyuk
    Sasaki, Takeshi N.
    Sasai, Masaki
    Seok, Chaok
    Lee, Jooyoung
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (08) : 2403 - 2417
  • [5] Building a Better Fragment Library for De Novo Protein Structure Prediction
    de Oliveira, Saulo H. P.
    Shi, Jiye
    Deane, Charlotte M.
    PLOS ONE, 2015, 10 (04):
  • [6] de Novo Protein Structure Prediction using Fragment Based Potential and Conformational Space Annealing
    Lee, Juyong
    Sasai, Masaki
    Seok, Chaok
    Lee, Jooyoung
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 461A - 461A
  • [7] Fold prediction of VP24 protein of Ebola and Marburg viruses using de novo fragment assembly
    Lee, Michael S.
    Lebeda, Frank J.
    Olson, Mark A.
    JOURNAL OF STRUCTURAL BIOLOGY, 2009, 167 (02) : 136 - 144
  • [8] BCL::Fold - De Novo Prediction of Complex and Large Protein Topologies by Assembly of Secondary Structure Elements
    Karakas, Mert
    Woetzel, Nils
    Staritzbichler, Rene
    Alexander, Nathan
    Weiner, Brian E.
    Meiler, Jens
    PLOS ONE, 2012, 7 (11):
  • [9] Construct a variable-length fragment library for de novo protein structure prediction
    Feng, Qiongqiong
    Hou, Minghua
    Liu, Jun
    Zhao, Kailong
    Zhang, Guijun
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)
  • [10] Improving De novo Protein Structure Prediction using Contact Maps Information
    Santos, Karina B.
    Rocha, Gregorio K.
    Custodio, Fabio L.
    Barbosa, Helio J. C.
    Dardenne, Laurent E.
    2017 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2017, : 107 - 112