Analytical and numerical stability of nonlinear neutral delay integro-differential equations

被引:9
|
作者
Hu, Peng [1 ]
Huang, Chengming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
基金
美国国家科学基金会;
关键词
RUNGE-KUTTA METHODS; INTEGRO-DIFFERENTIAL EQUATIONS; GENERAL LINEAR METHODS; ONE-LEG METHODS; ASYMPTOTIC STABILITY; MULTISTEP METHODS; SYSTEMS; CONTRACTIVITY; CRITERIA;
D O I
10.1016/j.jfranklin.2011.04.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we are concerned with the analytical and numerical stability of nonlinear neutral delay integro-differential equations (NDIDEs). First, sufficient conditions for the analytical stability of nonlinear NDIDEs with a variable delay are derived. Then, we show that any A-stable linear multistep method can preserve the asymptotic stability of the analytical solution for nonlinear NDIDEs with a constant delay. At last, we validate our conclusions by numerical experiments. (C) 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1082 / 1100
页数:19
相关论文
共 50 条