Deconstructing Earth's oldest ichnofossil record from the Pilbara Craton, West Australia: Implications for seeking life in the Archean subseafloor

被引:3
|
作者
McLoughlin, Nicola [1 ]
Wacey, David [2 ]
Phunguphungu, Siyolise [1 ]
Saunders, Martin [2 ]
Grosch, Eugene G. [1 ]
机构
[1] Rhodes Univ, Dept Geol, Grahamstown, South Africa
[2] Univ Western Australia UWA, Ctr Microscopy Characterizat & Anal CMCA, Perth, WA, Australia
基金
澳大利亚研究理事会; 新加坡国家研究基金会;
关键词
anatase; pillow lavas; seafloor-hydrothermal alteration; titanite; traces of life; MASSIVE-SULFIDE DEPOSIT; MICROBIAL TRACE FOSSILS; PILLOW LAVAS; BASALTIC GLASS; POTENTIAL BIOSIGNATURES; ALTERATION TEXTURES; GREENSTONE-BELT; VOLCANIC GLASS; BILLION YEARS; ROCKS;
D O I
10.1111/gbi.12399
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microtextures of titanite (CaTiSiO5) in exceptionally preserved Archean pillow lavas have been proposed as the earliest examples of microbial ichnofossils. An origin from microbial tunneling of seafloor volcanic glass that is subsequently chloritized and the tunnels infilled by titanite has been argued to record the activities of subseafloor microbes. We investigate the evidence in pillow lavas of the 3.35 Ga Euro Basalt from the Pilbara Craton, Western Australia, to evaluate the biogenicity of the microtextures. We employ a combination of light microscopy and chlorite mineral chemical analysis by EPMA (electron probe micro-analysis) to document the environment of formation and analyze their ultrastructure using FIB-TEM (focussed ion beam combined with transmission electron microscopy) to investigate their mode of growth. Petrographic study of the original and re-collected material identified an expanded range of titanite morphotypes along with early anatase growth forming chains and aggregates of coalesced crystallites in a sub-greenschist facies assemblage. High-sensitivity mapping of FIB lamellae cut across the microtextures confirm that they are discontinuous chains of coalesced crystallites that are highly variable in cross section and contain abundant chlorite inclusions, excluding an origin from the mineralization of previously hollow microtunnels. Comparison of chlorite mineral compositions to DSDP/IODP data reveals that the Euro Basalt chlorites are similar to recent seafloor chlorites. We advance an abiotic origin for the Euro Basalt microtextures formed by spontaneous nucleation and growth of titanite and/anatase during seafloor-hydrothermal metamorphism. Our findings reveal that the Euro Basalt microtextures are not comparable to microbial ichnofossils from the recent oceanic crust, and we question the evidence for life in these Archean lavas. The metamorphic reactions that give rise to the growth of the Euro Basalt microtextures could be commonplace in Archean pillow lavas and need to be excluded when seeking traces of life in the subseafloor on the early Earth.
引用
收藏
页码:525 / 543
页数:19
相关论文
共 9 条