Keys for Action: An Efficient Keyframe-Based Approach for 3D Action Recognition Using a Deep Neural Network

被引:28
|
作者
Yasin, Hashim [1 ]
Hussain, Mazhar [1 ]
Weber, Andreas [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Islamabad 44000, Pakistan
[2] Univ Bonn, Dept Comp Sci 2, D-53115 Bonn, Germany
关键词
action recognition; deep neural network (DNN); motion capture (MoCap) datasets; keyframe extraction; MOTION CAPTURE; SEQUENCE;
D O I
10.3390/s20082226
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we propose a novel and efficient framework for 3D action recognition using a deep learning architecture. First, we develop a 3D normalized pose space that consists of only 3D normalized poses, which are generated by discarding translation and orientation information. From these poses, we extract joint features and employ them further in a Deep Neural Network (DNN) in order to learn the action model. The architecture of our DNN consists of two hidden layers with the sigmoid activation function and an output layer with the softmax function. Furthermore, we propose a keyframe extraction methodology through which, from a motion sequence of 3D frames, we efficiently extract the keyframes that contribute substantially to the performance of the action. In this way, we eliminate redundant frames and reduce the length of the motion. More precisely, we ultimately summarize the motion sequence, while preserving the original motion semantics. We only consider the remaining essential informative frames in the process of action recognition, and the proposed pipeline is sufficiently fast and robust as a result. Finally, we evaluate our proposed framework intensively on publicly available benchmark Motion Capture (MoCap) datasets, namely HDM05 and CMU. From our experiments, we reveal that our proposed scheme significantly outperforms other state-of-the-art approaches.
引用
下载
收藏
页数:24
相关论文
共 50 条
  • [1] Enhanced 3D Action Recognition Based on Deep Neural Network
    Park, Sungjoo
    Kim, Dongchil
    2022 THIRTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN), 2022, : 470 - 472
  • [2] Study on 3D Action Recognition Based on Deep Neural Network
    Park, Sungjoo
    Kim, Dongchil
    2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2019, : 309 - 311
  • [3] Action recognition method based on a novel keyframe extraction method and enhanced 3D convolutional neural network
    Tian, Qiuhong
    Li, Saiwei
    Zhang, Yuankui
    Lu, Hongyi
    Pan, Hao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, : 475 - 491
  • [4] 3D Convolutional Neural Network for Action Recognition
    Zhang, Junhui
    Chen, Li
    Tian, Jing
    COMPUTER VISION, PT I, 2017, 771 : 600 - 607
  • [5] Learning Action Images Using Deep Convolutional Neural Networks For 3D Action Recognition
    Thien Huynh-The
    Hua, Cam-Hao
    Kim, Dong-Seong
    2019 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2019,
  • [6] Human Action Recognition with 3D Convolutional Neural Network
    Lima, Tiago
    Fernandes, Bruno
    Barros, Pablo
    2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [7] Action Recognition Using High Temporal Resolution 3D Neural Network Based on Dilated Convolution
    Xu, Yongyang
    Feng, Yaxing
    Xie, Zhong
    Xie, Mingyu
    Luo, Wei
    IEEE ACCESS, 2020, 8 : 165365 - 165372
  • [8] Action Recognition Using Action Sequences Optimization and Two-Stream 3D Dilated Neural Network
    Xiong, Xin
    Min, Weidong
    Han, Qing
    Wang, Qi
    Zha, Cheng
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [9] An improved memristor-based 3D Convolutional Neural Network for action recognition
    Wang, Yining
    Li, Ke
    Shen, Siyuan
    Duan, Shukai
    Proceedings of SPIE - The International Society for Optical Engineering, 2023, 12707
  • [10] Recurrent Neural Network based Action Recognition from 3D Skeleton Data
    Shukla, Parul
    Biswas, Kanad K.
    Kalra, Prem K.
    2017 13TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY AND INTERNET-BASED SYSTEMS (SITIS), 2017, : 339 - 345