Analytic bending solutions of rectangular cantilever thin plates

被引:0
|
作者
Tian, B. [1 ]
Zhong, Y. [2 ]
Li, R. [2 ]
机构
[1] China Rd & Bridge Corp, Dept Sci & Technol, Beijing 100011, Peoples R China
[2] Dalian Univ Technol, Fac Infrastruct Engn, Dalian 116024, Liaoning Provin, Peoples R China
关键词
rectangular cantilever thin plate; bending solution; analytic solution;
D O I
10.1016/S1644-9665(12)60094-6
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Analytic bending solutions of rectangular cantilever thin plates subjected to arbitrary loads are derived using the double finite integral transform method. Since only the basic governing equations of the plates are used and there are no predetermined functions, the present method overcomes the deficiency of the conventional semi-inverse methods thus serves as a completely rational model in solving plate bending problems. The method can be extended to more boundary value problems of plates such as buckling and vibration.
引用
收藏
页码:1043 / 1052
页数:10
相关论文
共 50 条
  • [1] On new symplectic superposition method for exact bending solutions of rectangular cantilever thin plates
    Li, Rui
    Zhong, Yang
    Tian, Bin
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2011, 38 (02) : 111 - 116
  • [2] Exact bending solutions of orthotropic rectangular cantilever thin plates subjected to arbitrary loads
    Li R.
    Zhong Y.
    Tian B.
    Du J.
    [J]. International Applied Mechanics, 2011, 47 (01) : 107 - 119
  • [3] On new analytic free vibration solutions of rectangular thin cantilever plates in the symplectic space
    Li, Rui
    Wang, Pengcheng
    Yang, Zekun
    Yang, Jiaqi
    Tong, Linghui
    [J]. APPLIED MATHEMATICAL MODELLING, 2018, 53 : 310 - 318
  • [4] Bending of Uniformly Cantilever Rectangular Plates
    张福范
    [J]. Applied Mathematics and Mechanics(English Edition), 1980, (03) : 371 - 383
  • [5] THE UNSYMMETRICAL BENDING OF CANTILEVER RECTANGULAR PLATES
    成祥生
    [J]. Applied Mathematics and Mechanics(English Edition), 1987, (11) : 1091 - 1098
  • [6] THE BENDING STABILITY AND VIBRATIONS OF CANTILEVER RECTANGULAR PLATES
    成祥生
    [J]. Applied Mathematics and Mechanics(English Edition), 1987, (07) : 673 - 683
  • [7] Analytic and finite element solutions for bending and buckling of orthotropic rectangular plates
    Bao, G
    Jiang, W
    Roberts, JC
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1997, 34 (14) : 1797 - 1822
  • [8] BENDING OF THIN RECTANGULAR PLATES
    FLETCHER, HJ
    THORNE, CJ
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1954, 21 (03): : 289 - 289
  • [9] BENDING OF RECTANGULAR CANTILEVER PLATES OF MODERATE THICKNESS.
    Fan, Jianzhong
    Jia, Baofan
    [J]. Huadong Huagong Xueyuan xuebao, 1988, 14 (02): : 243 - 252
  • [10] Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method
    Li, Rui
    Zhong, Yang
    Li, Ming
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153):