Zero product preserving functionals on C(Ω)-valued spaces of functions

被引:0
|
作者
Pourghobadi, Ziba [1 ]
Sady, Fereshteh [2 ]
Tavani, Masoumeh Najafi [3 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Math, Tehran, Iran
[2] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, Tehran 14115134, Iran
[3] Islamic Azad Univ, Islamshahr Branch, Fac Basic Sci, Dept Math, Islamshahr Tehran, Iran
关键词
Zero product preserving functionals; Vector-valued spaces of functions; Ring homomorphisms; WEIGHTED COMPOSITION OPERATORS; BANACH-ALGEBRAS; MAPS;
D O I
10.1007/s43034-019-00031-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a compact Hausdorff space and Omega be a locally compact sigma-compact space. In this paper we study (real-linear) continuous zero product preserving functionals phi:A?C on certain subalgebras A of the Frechet algebra C(X,C(Omega)). The case that phi is continuous with respect to a specified complete metric on A will also be discussed. In particular, for a compact Hausdorff space K we characterize -continuous linear zero product preserving functionals on the Banach algebra C1([0,1],C(K)) equipped with the norm f=f[0,1]+f '[0,1], where [0,1] denotes the supremum norm. An application of the results is given for continuous ring homomorphisms on such subalgebras.
引用
收藏
页码:459 / 472
页数:14
相关论文
共 50 条