Prediction of dose-volume histograms in nasopharyngeal cancer IMRT using geometric and dosimetric information

被引:21
|
作者
Jiao, Sheng-Xiu [1 ]
Chen, Li-Xin [2 ]
Zhu, Jin-Han [2 ]
Wang, Ming-Li [2 ]
Liu, Xiao-Wei [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Canc Ctr, State Key Lab Oncol South China, Guangzhou, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2019年 / 64卷 / 23期
基金
中国国家自然科学基金;
关键词
DVH prediction; geometric information; dosimetric information; nasopharyngeal cancer; PLAN QUALITY; AT-RISK; MODEL;
D O I
10.1088/1361-6560/ab50eb
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A method using both patient geometric and dosimetric information was proposed to predict dose-volume histograms (DVHs) of organs at risk (OARs) for a nasopharyngeal cancer (NPC) intensity-modulated radiation therapy (IMRT) plan. A total of 106 nine-field IMRT NPC plans were used in this study. Twenty-six plans were randomly selected as testing cases, and the remaining plans were used as the training data. A method employing geometric and dosimetric information was developed for OAR DVH prediction. The dosimetric information was derived from an initial dose calculation using a simple unoptimized conformal plan. The DVHs were also predicted using only the geometric information. The DVH prediction model was a generalized regression neural network (GRNN). Mean absolute error (MAE) and R-2 values were introduced to evaluate DVH prediction accuracy. Significant differences in the DVH prediction accuracy were found between the method employing the geometric and dosimetric information and the method utilizing the geometric information for the brainstem (R-2, 0.98 versus 0.95, p = 0.007; MAE, 3.52% versus 7.19%, p = 0.002), spinal cord (R-2, 0.98 versus 0.96, p < 0.001; MAE, 2.80% versus 4.36%, p < 0.001), left optic nerve (R-2, 0.90 versus 0.77, p = 0.014; MAE, 3.07% versus 11.29%, p = 0.025) and other organs. On average, the R-2 value increased by similar to 6.7% and the MAE value decreased by similar to 46.7% after adding the dosimetric information to the DVH prediction. We developed a method for predicting DVHs of OARs in NPC IMRT plans by using geometric and dosimetric information. Adding dosimetric information can help predict the DVHs of OARs in NPC IMRT plans.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] DOSE-VOLUME HISTOGRAMS
    DRZYMALA, RE
    MOHAN, R
    BREWSTER, L
    CHU, J
    GOITEIN, M
    HARMS, W
    URIE, M
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1991, 21 (01): : 71 - 78
  • [2] Predicting dose-volume histograms for organs-at-risk in IMRT planning
    Appenzoller, Lindsey M.
    Michalski, Jeff M.
    Thorstad, Wade L.
    Mutic, Sasa
    Moore, Kevin L.
    [J]. MEDICAL PHYSICS, 2012, 39 (12) : 7446 - 7461
  • [3] A generalization of dose volume histograms and dose-volume based IMRT objective functions for deformable tissue
    Rehbinder, H
    Korevaar, E
    Uhrdin, J
    Lof, J
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 60 (01): : S622 - S622
  • [4] Limitations in using dose-volume histograms for radiotherapy dose optimization
    Moiseenko, V
    Van Dyk, J
    Battista, J
    Travis, E
    [J]. USE OF COMPUTERS IN RADIATION THERAPY, 2000, : 239 - 241
  • [5] Dose-volume histograms for bladder and rectum
    Ting, JY
    Wu, XD
    Fiedler, JA
    Yang, CC
    Watzich, ML
    Markoe, A
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 38 (05): : 1105 - 1111
  • [6] Evaluating Head and Neck IMRT Plans with a Computational Tool for Spatial Dose-Volume Histograms
    Myint, K.
    Pyakuryal, A.
    Gopalakrishnan, M.
    Sathiaseelan, V.
    Mittal, B. B.
    [J]. MEDICAL PHYSICS, 2009, 36 (06)
  • [7] Prostate cancer: Problems in the interpretation of rectal dose-volume histograms
    Geinitz, H
    Zimmermann, FB
    Narkwong, L
    Kneschaurek, P
    Wehrmann, R
    Kuzmany, A
    Molls, M
    [J]. STRAHLENTHERAPIE UND ONKOLOGIE, 2000, 176 (04) : 168 - 172
  • [8] Analytical probabilistic modeling of dose-volume histograms
    Wahl, Niklas
    Hennig, Philipp
    Wieser, Hans-Peter
    Bangert, Mark
    [J]. MEDICAL PHYSICS, 2020, 47 (10) : 5260 - 5273
  • [9] Impact of the radiotherapy technique on the correlation between dose-volume histograms of the bladder wall defined on MRI imaging and dose-volume/surface histograms in prostate cancer patients
    Maggio, Angelo
    Carillo, Viviana
    Cozzarini, Cesare
    Perna, Lucia
    Rancati, Tiziana
    Valdagni, Riccardo
    Gabriele, Pietro
    Fiorino, Claudio
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (07): : N115 - N123
  • [10] Variation of PTV dose distribution on patient size in prostate VMAT and IMRT: a dosimetric evaluation using the PTV dose-volume factor
    Chow, James C. L.
    Jiang, Runqing
    Markel, Daniel
    [J]. JOURNAL OF RADIOTHERAPY IN PRACTICE, 2014, 13 (02) : 189 - 194