Validation of Psoriatic Arthritis Diagnoses in Electronic Medical Records Using Natural Language Processing

被引:25
|
作者
Love, Thorvardur Jon [1 ]
Cai, Tianxi [2 ]
Karlson, Elizabeth W. [1 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Boston, MA 02115 USA
[2] Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USA
关键词
psoriatic arthritis; epidemiology; random forests; algorithm; natural language processing; electronic medical record; database; validation; locating; identifying; NLP; POSITIVE PREDICTIVE-VALUE; CLASSIFICATION CRITERIA; RANDOM FORESTS; SENSITIVITY; PREVALENCE; ACCURACY; VALIDITY;
D O I
10.1016/j.semarthrit.2010.05.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives: To test whether data extracted from full text patient visit notes from an electronic medical record would improve the classification of psoriatic arthritis (PsA) compared with an algorithm based on codified data. Methods: From the >1,350,000 adults in a large academic electronic medical record, all 2318 patients with a billing code for PsA were extracted and 550 were randomly selected for chart review and algorithm training. Using codified data and phrases extracted from narrative data using natural language processing, 31 predictors were extracted and 3 random forest algorithms were trained using coded, narrative, and combined predictors. The receiver operator curve was used to identify the optimal algorithm and a cut-point was chosen to achieve the maximum sensitivity possible at a 90% positive predictive value (PPV). The algorithm was then used to classify the remaining 1768 charts and finally validated in a random sample of 300 cases predicted to have PsA. Results: The PPV of a single PsA code was 57% (95% CI 55%-58%). Using a combination of coded data and natural language processing (NLP), the random forest algorithm reached a PPV of 90% (95% CI 86%-93%) at a sensitivity of 87% (95% CI 83%-91%) in the training data. The PPV was 93% (95% CI 89%-96%) in the validation set. Adding NLP predictors to codified data increased the area under the receiver operator curve (P < 0.001). Conclusions: Using NLP with text notes from electronic medical records improved the performance of the prediction algorithm significantly. Random forests were a useful tool to accurately classify psoriatic arthritis cases to enable epidemiological research. (C) 2011 Elsevier Inc. All rights reserved. Semin Arthritis Rheum 40:413-420
引用
收藏
页码:413 / 420
页数:8
相关论文
共 50 条
  • [1] Natural Language Processing and Electronic Medical Records Reply
    Murff, Harvey J.
    FitzHenry, Fern
    Speroff, Theodore
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 306 (21): : 2325 - 2326
  • [2] Detecting inpatient falls by using natural language processing of electronic medical records
    Shin-ichi Toyabe
    BMC Health Services Research, 12
  • [3] Detecting inpatient falls by using natural language processing of electronic medical records
    Toyabe, Shin-ichi
    BMC HEALTH SERVICES RESEARCH, 2012, 12
  • [4] Development and Validation of an Algorithm to Identify Prostate Cancer Related Mortality in Electronic Medical Records Using Natural Language Processing
    DiBello, Julia R.
    Wallner, Lauren P.
    Zheng, Chengyi
    Yu, Wei
    Li, Bonnie H.
    VanDenEeden, Stephen K.
    Weinmann, Sheila
    Ritzwoller, Debra
    Richert-Boe, Kathryn
    Jacobsen, Stephen J.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2015, 24 : 418 - 419
  • [5] Ascertainment of asthma prognosis using natural language processing from electronic medical records
    Sohn, Sunghwan
    Wi, Chung-Il
    Wu, Stephen T.
    Liu, Hongfang
    Ryu, Euijung
    Krusemark, Elizabeth
    Seabright, Alicia
    Voge, Gretchen A.
    Juhn, Young J.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2018, 141 (06) : 2292 - 2294
  • [6] Development of phenotype algorithms using electronic medical records and incorporating natural language processing
    Liao, Katherine P.
    Cai, Tianxi
    Savova, Guergana K.
    Murphy, Shawn N.
    Karlson, Elizabeth W.
    Ananthakrishnan, Ashwin N.
    Gainer, Vivian S.
    Shaw, Stanley Y.
    Xia, Zongqi
    Szolovits, Peter
    Churchill, Susanne
    Kohane, Isaac
    BMJ-BRITISH MEDICAL JOURNAL, 2015, 350
  • [7] Natural Language Processing to Identify Cancer Treatments With Electronic Medical Records
    Zeng, Jiaming
    Banerjee, Imon
    Henry, A. Solomon
    Wood, Douglas J.
    Shachter, Ross D.
    Gensheimer, Michael F.
    Rubin, Daniel L.
    JCO CLINICAL CANCER INFORMATICS, 2021, 5 : 379 - 393
  • [8] Can Natural Language Processing Fulfill the Promise of Electronic Medical Records?
    Heidenreich, Paul A.
    JOURNAL OF CARDIAC FAILURE, 2014, 20 (07) : 465 - 466
  • [9] Validation of Phenotyping Algorithms for Stroke From Electronic Health Records Using Natural Language Processing
    Zhao, Yiqing
    Fu, Suyang
    Larson, Nicholas B.
    Decker, Paul A.
    Chamberlain, Alanna M.
    Roger, Veronique L.
    Liu, Hongfang
    Bielinski, Suzette J.
    CIRCULATION, 2019, 139
  • [10] IDENTIFY PATIENTS WITH PYRUVATE KINASE DEFICIENCY USING NATURAL LANGUAGE PROCESSING ON ELECTRONIC MEDICAL RECORDS
    Liu, S.
    Shi, L.
    Lin, Y.
    Zhang, Y.
    Hong, D.
    Shao, Y.
    VALUE IN HEALTH, 2020, 23 : S329 - S329