Machine Learning in Chemical Engineering: A Perspective

被引:89
|
作者
Schweidtmann, Artur M. [1 ,2 ]
Esche, Erik [3 ]
Fischer, Asja [4 ]
Kloft, Marius
Repke, Jens-Uwe [3 ]
Sager, Sebastian [5 ]
Mitsos, Alexander [2 ,6 ,7 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Rhein Westfal TH Aachen, Aachener Verfahrenstech, Forckenbeckstr 51, D-52074 Aachen, Germany
[3] Tech Univ Berlin, Fachgebiet Dynam & Betriebtech Anlagen, Str 17 Juni 135, D-10623 Berlin, Germany
[4] Ruhr Univ Bochum, Dept Math, Univ Str 150, D-44801 Bochum, Germany
[5] Tech Univ Kaiserslautern, Dept Comp Sci, Erwin Schrodinger Str 52, D-67663 Kaiserslautern, Germany
[6] JARA Ctr Simulat & Data Sci CSD, Aachen, Germany
[7] Forschungszentrum Julich, Energy & Climate Res IEK 10 Energy Syst Engn, Wilhelm Johnen Str, D-52428 Julich, Germany
关键词
Deep learning; Hybrid modeling; Machine learning; Optimization; Reinforcement learning; SOFT-SENSOR; NEURAL-NETWORKS; HYBRID MODELS; EXPERT SYSTEM; OPTIMIZATION; REGRESSION; IDENTIFICATION; CHALLENGES; PREDICTION; ANALYTICS;
D O I
10.1002/cite.202100083
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The transformation of the chemical industry to renewable energy and feedstock supply requires new paradigms for the design of flexible plants, (bio-)catalysts, and functional materials. Recent breakthroughs in machine learning (ML) provide unique opportunities, but only joint interdisciplinary research between the ML and chemical engineering (CE) communities will unfold the full potential. We identify six challenges that will open new methods for CE and formulate new types of problems for ML: (1) optimal decision making, (2) introducing and enforcing physics in ML, (3) information and knowledge representation, (4) heterogeneity of data, (5) safety and trust in ML applications, and (6) creativity. Under the umbrella of these challenges, we discuss perspectives for future interdisciplinary research that will enable the transformation of CE.
引用
收藏
页码:2029 / 2039
页数:11
相关论文
共 50 条
  • [1] Machine Learning and Data Science in Chemical Engineering
    Gao, Hanyu
    Zhu, Li-Tao
    Luo, Zheng-Hong
    Fraga, Marco A.
    Hsing, I-Ming
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (24) : 8357 - 8358
  • [2] Keynote: Machine Learning on the Edge A Software Engineering Perspective
    Lalanda, Philippe
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,
  • [3] Machine learning in chemical engineering: Hands-on activities
    Lavor, Vitor
    de Come, Fernando
    dos Santos, Moises Teles
    Vianna, Ardson S.
    [J]. EDUCATION FOR CHEMICAL ENGINEERS, 2024, 46 : 10 - 21
  • [4] A software engineering perspective on engineering machine learning systems: State of the art and challenges
    Giray, Gorkem
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2021, 180
  • [5] Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats
    Dobbelaere, Maarten R.
    Plehiers, Pieter P.
    van de Vijver, Ruben
    V. Stevens, Christian
    Van Geem, Kevin M.
    [J]. ENGINEERING, 2021, 7 (09) : 1201 - 1211
  • [6] Machine learning interatomic potentials in engineering perspective for developing cathode materials
    Kwon, Dohyeong
    Kim, Duho
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23837 - 23847
  • [7] Towards a robust and trustworthy machine learning system development: An engineering perspective
    Xiong, Pulei
    Buffett, Scott
    Iqbal, Shahrear
    Lamontagne, Philippe
    Mamun, Mohammad
    Molyneaux, Heather
    [J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 65
  • [8] Outlook: How I Learned to Love Machine Learning (A Personal Perspective on Machine Learning in Process Systems Engineering)
    Zavala, Victor M.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (23) : 8995 - 9005
  • [9] Machine Learning for Engineering
    Dyck, Jeff
    [J]. 2018 23RD ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2018, : 422 - 427
  • [10] Machine Learning in Chemical Product Engineering: The State of the Art and a Guide for Newcomers
    Trinh, Cindy
    Meimaroglou, Dimitrios
    Hoppe, Sandrine
    [J]. PROCESSES, 2021, 9 (08)