A Generative Model to Synthesize EEG Data for Epileptic Seizure Prediction

被引:28
|
作者
Rasheed, Khansa [1 ]
Qadir, Junaid [2 ,3 ]
O'Brien, Terence J. [4 ]
Kuhlmann, Levin [5 ]
Razi, Adeel [6 ,7 ]
机构
[1] Informat Technol Univ ITU, Dept Elect Engn, Lahore 54000, Punjab, India
[2] Qatar Univ, Coll Engn, Dept Comp Sci & Engn, Doha, Qatar
[3] Informat Technol Univ ITU, Dept Elect Engn, Lahore 540000, Punjab, Pakistan
[4] Monash Univ, Cent Clin Sch, Dept Neurosci, Melbourne, Vic 3800, Australia
[5] Monash Univ, Fac Informat Technol, Clayton, Vic 3800, Australia
[6] Monash Univ, Turner Inst Brain & Mental Hlth, Clayton, Vic 3800, Australia
[7] Wellcome Ctr Human Neuroimaging, UCL, London WC1E 6BT, England
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
Electroencephalography; Brain modeling; Feature extraction; Scalp; Prediction algorithms; Predictive models; Data models; Epileptic seizure; EEG; machine learning; deep learning; transfer learning; adversarial networks;
D O I
10.1109/TNSRE.2021.3125023
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Scarcity of good quality electroencephalography (EEG) data is one of the roadblocks for accurate seizure prediction. This work proposes a deep convolutional generative adversarial network (DCGAN) to generate synthetic EEG data. Another objective of our study is to use transfer-learning (TL) for evaluating the performance of four well-known deep-learning (DL) models to predict epileptic seizure. Methods: We proposed an algorithm that generate synthetic data using DCGAN trained on real EEG data in a patient-specific manner. We validate quality of generated data using one-class SVM and a new proposal namely convolutional epileptic seizure predictor (CESP). We evaluate performance of VGG16, VGG19, ResNet50, and Inceptionv3 trained on augmented data using TL with average time of 10 min between true prediction and seizure onset samples. Results: The CESP model achieves sensitivity of 78.11% and 88.21%, and false prediction rate of 0.27/h and 0.14/h for training on synthesized and testing on real Epilepsyecosystem and CHB-MIT datasets, respectively. Using TL and augmented data, Inceptionv3 achieved highest accuracy with sensitivity of 90.03% and 0.03 FPR/h. With the proposed data augmentation method prediction results of CESP model and Inceptionv3 increased by 4-5% as compared to state-of-the-art augmentation techniques. Conclusion: The performance of CESP shows that synthetic data acquired association between features and labels very well and by using the augmented data CESP predicted better than chance level for both datasets. Significance: The proposed DCGAN can be used to generate synthetic data to increase the prediction performance and to overcome good quality data scarcity issue.
引用
收藏
页码:2322 / 2332
页数:11
相关论文
共 50 条
  • [1] EEG ANALYSIS AND EPILEPTIC SEIZURE PREDICTION
    VIGLIONE, SS
    WALSH, GO
    YEAGER, CL
    SPIRE, JP
    [J]. EPILEPSIA, 1977, 18 (02) : 289 - 289
  • [2] EPILEPTIC SEIZURE PREDICTION BY SCALP EEG ANALYSIS
    Kelly, Kevin M.
    Shiau, D.
    Kern, R. T.
    Chien, J. H.
    Pardalos, P. M.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    [J]. EPILEPSIA, 2009, 50 : 30 - 30
  • [3] Automatic Epileptic Seizure Prediction in Scalp EEG
    Mohan, Nirmal
    Shanir, Muhammed P. P.
    Sulthan, Noufal
    Sofiya, S.
    Khan, Kashif Ahmad
    [J]. 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CIRCUITS AND SYSTEMS (ICICS 2018), 2018, : 275 - 280
  • [4] Epileptic Seizure Prediction by Scalp EEG Analysis
    Sackellares, J. Chris
    Shiau, Deng-Shan
    Chien, Jui-Hong
    Halford, Jonathan
    Kelly, Kevin M.
    [J]. ANNALS OF NEUROLOGY, 2009, 66 : S13 - S14
  • [5] An Interpretable Deep Learning Classifier for Epileptic Seizure Prediction Using EEG Data
    Jemal, Imene
    Mezghani, Neila
    Abou-Abbas, Lina
    Mitiche, Amar
    [J]. IEEE ACCESS, 2022, 10 : 60141 - 60150
  • [6] A Study of EEG Feature Complexity in Epileptic Seizure Prediction
    Jemal, Imene
    Mitiche, Amar
    Mezghani, Neila
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 15
  • [7] Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction
    Emara H.M.
    Elwekeil M.
    Taha T.E.
    El-Fishawy A.S.
    El-Rabaie E.-S.M.
    El-Shafai W.
    El Banby G.M.
    Alotaiby T.
    Alshebeili S.A.
    Abd El-Samie F.E.
    [J]. Annals of Data Science, 2022, 9 (02) : 393 - 428
  • [8] Epileptic seizure prediction using EEG peripheral channels
    Salvador, Carolina
    Felizardo, Virginie
    Zacarias, Henriques
    Souza-Pereira, Leonice
    Pourvahab, Mehran
    Pombo, Nuno
    Garcia, Nuno M.
    [J]. 2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG, 2023, : 60 - 63
  • [9] Comprehensive Analysis of EEG Datasets for Epileptic Seizure Prediction
    Rahman, Rihat
    Varnosfaderani, Shiva Maleki
    Makke, Omar
    Sarhan, Nabil J.
    Asano, Eishi
    Luat, Aimee
    Alhawari, Mohammad
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [10] Cloud-based Deep Learning of Big EEG Data for Epileptic Seizure Prediction
    Hosseini, Mohammad-Parsa
    Soltanian-Zadeh, Hamid
    Elisevich, Kost
    Pompili, Dario
    [J]. 2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 1151 - 1155