Theoretical Simulation Model of a Proton Exchange Membrane Fuel Cell

被引:1
|
作者
Tzelepis, Stefanos [1 ]
Kavadias, Kosmas A. [1 ]
机构
[1] Univ West Attica, Dept Mech Engn, Lab Soft Energy Applicat & Environm Protect, 250,Thivon & P Ralli Str,Campus 2, GR-12201 Egaleo Athens, Greece
关键词
D O I
10.1063/1.5138538
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Current trends in the energy production sector call for alternative energy production methods with a high focus on renewable energy sources. Most of the countries in the world, and especially the developed countries, fund research towards distributed generation and zero energy balance communities. In order to eliminate the consumption of fossil fuels, a crucial role is taken by hydrogen as a fuel, as, if it is produced from renewable energy sources, it could contribute in substituting the fossil fuels used in transport or building's thermal energy sectors. Moreover, it is well known that electrolysis-fuel cells can also be used as a storage medium in autonomous renewable energy systems. In this case, fuel cells need to be carefully sized in order to optimize the storage system both in energy and economic aspects. In this respect, a theoretical model was developed, able to simulate at any time step the operation of a Proton Exchange Membrane Fuel Cell, by using as input data the technical specifications of the cell and the hydrogen flow. The developed model is based on theoretical, experimental and semi-empirical models in order to provide a flexible algorithm in terms of fuel cell sizing. The model is validated with an existing fuel cell experimental system (Nexa 1200) at different hydrogen flow profiles. The results showed high precision which verifies the reliability of the proposed model for using it in optimization procedures.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Simulation of a proton exchange membrane fuel cell
    Hasan, A. B. Mahmud
    Guo, S. M.
    Wahab, M. A.
    WORLD JOURNAL OF ENGINEERING, 2011, 8 (02) : 109 - 115
  • [2] Proton exchange membrane fuel cell model for prognosis
    Detti, A. H.
    Jemei, S.
    Steiner, N. Yousfi
    2018 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2018,
  • [3] A general model of proton exchange membrane fuel cell
    Le, Anh Dinh
    Zhou, Biao
    JOURNAL OF POWER SOURCES, 2008, 182 (01) : 197 - 222
  • [4] Simulation On The Cooling Effect Of Proton Exchange Membrane Fuel Cell
    Sun Shimei
    Liu Wei
    MODERN TECHNOLOGIES IN MATERIALS, MECHANICS AND INTELLIGENT SYSTEMS, 2014, 1049 : 809 - 812
  • [5] Modeling and simulation of proton exchange membrane fuel cell systems
    Beicha, Abdellah
    JOURNAL OF POWER SOURCES, 2012, 205 : 335 - 339
  • [6] Proton Exchange Membrane Fuel Cell Lumped Modeling and Simulation
    Jia, Qiuhong
    Han, Ming
    Liao, Linqing
    Xiao, Yan
    MATERIAL SCIENCE AND ENGINEERING TECHNOLOGY, 2012, 462 : 52 - +
  • [7] Design and simulation of proton exchange membrane fuel cell system
    Wu, Di
    Li, Kai
    Gao, Yan
    Yin, Cong
    Tang, Hao
    ENERGY REPORTS, 2021, 7 : 522 - 530
  • [8] A Numerical Simulation of Proton Exchange Membrane Fuel Cell Performance
    Yu, Shigang
    He, Hui
    Xu, Yousheng
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 376 - +
  • [9] Modelling and simulation system of proton exchange membrane fuel cell
    Huangfu, Yigeng
    Shi, Qi
    Li, Yuren
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2015, 33 (04): : 682 - 687
  • [10] Simulation for temperature field of proton exchange membrane fuel cell
    State Key Laboratory of Advanced Technology for Materials Synthesis, Wuhan University of Technology, Wuhan 430070, China
    不详
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban), 2006, 1 (113-116):