Non-parametric estimation of copula parameters: testing for time-varying correlation

被引:1
|
作者
Gong, Jinguo [2 ]
Wu, Weiou [3 ]
McMillan, David [1 ]
Shi, Daimin [2 ]
机构
[1] Univ Stirling, Accounting & Finance Div, Stirling Management Sch, Stirling FK9 4LA, Scotland
[2] Southwestern Univ Finance & Econ, Sch Stat, Chengdu, Peoples R China
[3] Univ Limerick, Kemmy Business Sch, Dept Econ, Limerick, Ireland
来源
基金
中国国家自然科学基金;
关键词
dynamic dependence; kernel estimate; local likelihood estimation; stock returns; time-varying copula; SEMIPARAMETRIC ESTIMATION; EFFICIENT ESTIMATION; MODELS; SERIES;
D O I
10.1515/snde-2012-0089
中图分类号
F [经济];
学科分类号
02 ;
摘要
The correlation structure of financial assets is a key input with regard to portfolio and risk management. In this paper, we propose a non-parametric estimation method for the time-varying copula parameter. This is achieved in two steps: first, displaying the marginal distributions of financial asset returns by applying the empirical distribution function; second, by implementing the local likelihood method to estimate the copula parameters. The method for obtaining the optimal bandwidth through a maximum pseudo likelihood function and a statistical test on whether the copula parameter is time-varying are also introduced. A simulation study is conducted to show that our method is superior to its contender. Finally, we verify the proposed estimation methodology and time-varying statistical test by analysing the dynamic linkages between the Shanghai, Shenzhen and Hong Kong stock markets.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [1] Interpretation of Non-Parametric Estimates of Time-Varying Systems
    Ludvig, Daniel
    Perreault, Eric J.
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2701 - 2706
  • [2] NON-PARAMETRIC LEARNING ALGORITHMS IN TIME-VARYING ENVIRONMENTS
    RUTKOWSKI, L
    [J]. SIGNAL PROCESSING, 1989, 18 (02) : 129 - 137
  • [3] Comparison Between Parametric and Non-Parametric Approaches for Time-Varying Delay Estimation with Application to Electromyography Signals
    Gia Thien Luu
    Tran Trung Duy
    [J]. NATURE OF COMPUTATION AND COMMUNICATION (ICTCC 2016), 2016, 168 : 43 - 51
  • [4] Non-parametric estimate of the system function of a time-varying system
    Lataire, John
    Pintelon, Rik
    Louarroudi, Ebrahim
    [J]. AUTOMATICA, 2012, 48 (04) : 666 - 672
  • [5] Non-parametric Copula Estimation Under Bivariate Censoring
    Gribkova, Svetlana
    Lopez, Olivier
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (04) : 925 - 946
  • [6] Non-parametric estimation of copula based mutual information
    Krishnankutty, Baby Alpettiyil
    Ganapathy, Rajesh
    Sankaran, Paduthol Godan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (06) : 1513 - 1527
  • [7] A Non-Parametric Linear Parameter Varying Approach for Identification of Linear Time-Varying Systems
    Tehrani, Ehsan Sobhani
    Kearney, Robert E.
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 733 - 738
  • [8] Non-parametric Best Linear Time Invariant Approximation of a Linear Time-Varying System
    Lataire, John
    Louarroudi, Ebrahim
    Pintelon, Rik
    [J]. 2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1050 - 1055
  • [9] Income inequality and renewable energy consumption: Time-varying non-parametric evidence
    Churchill, Sefa Awaworyi
    Ivanovski, Kris
    Munyanyi, Musharavati Ephraim
    [J]. JOURNAL OF CLEANER PRODUCTION, 2021, 296
  • [10] Non-parametric time-varying coefficient panel data models with fixed effects
    Li, Degui
    Chen, Jia
    Gao, Jiti
    [J]. ECONOMETRICS JOURNAL, 2011, 14 (03): : 387 - 408