Real Space-Real Time Evolution of Excitonic States Based on the Bethe-Salpeter Equation Method

被引:2
|
作者
Elliott, Joshua D. [5 ]
Mosconi, Edoardo [1 ]
De Angelis, Filippo [1 ,2 ]
Ambrosetti, Alberto [3 ]
Umari, Paolo [3 ,4 ]
机构
[1] Ist CNR Sci & Technol Mol, I-06123 Perugia, Italy
[2] Ist Italiano Technol, CompuNet, I-16163 Genoa, Italy
[3] Univ Padua, Dipartimento Fis & Astron, Padua, Italy
[4] CNR, Ist Officina Mat, CNR IOM DEMOCRITOS, I-34136 Trieste, Italy
[5] Univ Manchester, Sch Chem Engn & Analyt Sci, Manchester, Lancs, England
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2021年 / 12卷 / 30期
基金
欧盟地平线“2020”;
关键词
DENSITY-FUNCTIONAL THEORY; SENSITIZED SOLAR-CELLS; ELECTRON INJECTION; EXCITED-STATES; TD-DFT; TIO2; EXCITATIONS; TECHNOLOGIES; SIMULATIONS; EFFICIENCY;
D O I
10.1021/acs.jpclett.1c01742
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a method for constructing localized excitations and simulating the real time dynamics of excitons at the Many-Body Perturbation Theory Bethe-Salpeter Equation level. We track, on the femto-seconds scale, electron injection from a photoexcited dye into a semiconducting slab. From the time-dependent many-body wave function we compute the spatial evolution of the electron and of the hole; full electron injection is attained within 5 fs. Time-resolved analysis of the electron density and electron-hole interaction energy hints at a two-step charge transfer mechanism through an intermediary partially injected state. We adopt the Von-Neumann entropy for analyzing how the electron and hole entangle. We find that the excitation of the dye-semiconductor model may be represented by a four-level system and register a decrease in entanglement upon electron injection. At full injection, the electron and the hole exhibit only a small degree of entanglement indicative of pure electron and hole states.
引用
收藏
页码:7261 / 7269
页数:9
相关论文
共 50 条
  • [1] BETHE-SALPETER EQUATION IN MOMENTUM SPACE
    SAENGER, RM
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (12) : 2366 - &
  • [2] Solving the Bethe-Salpeter equation in real frequencies at finite temperature
    Tupitsyn, I. S.
    V. Prokof'ev, N.
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [3] SOLUTION OF BETHE-SALPETER EQUATION IN THE MINKOWSKI SPACE FOR THE SCATTERING STATES
    Karmanov, V. A.
    Carbonell, J.
    LIGHT CONE CRACOW 2012: MODERN APPROACHES TO NONPERTURBATIVE GAUGE THEORIES AND THEIR APPLICATIONS, 2013, 6 (01): : 335 - +
  • [4] FREDHOLM METHOD FOR BETHE-SALPETER EQUATION
    GRAVESMORRIS, PR
    PHYSICAL REVIEW LETTERS, 1966, 16 (05) : 201 - +
  • [5] Minkowski space approach for the Bethe-Salpeter equation
    Tomio, Lauro
    Gutierrez, Cristian
    Gigante, Vitor
    XXIII INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS RELATIVISTIC NUCLEAR PHYSICS AND QUANTUM CHROMODYNAMICS (BALDIN ISHEPP XXIII), 2017, 138
  • [6] Solving Bethe-Salpeter equation in Minkowski space
    V. A. Karmanov
    J. Carbonell
    The European Physical Journal A - Hadrons and Nuclei, 2006, 27 : 1 - 9
  • [7] Solving the Bethe-Salpeter Equation in Euclidean Space
    Dorkin, S. M.
    Kaptari, L. P.
    degli Atti, C. Ciofi
    Kaempfer, B.
    FEW-BODY SYSTEMS, 2011, 49 (1-4) : 233 - 246
  • [8] Solving Bethe-Salpeter Equation for Scattering States
    Karmanov, V. A.
    Carbonell, J.
    FEW-BODY SYSTEMS, 2013, 54 (7-10) : 1509 - 1512
  • [9] NNBAR QUASINUCLEAR STATES AND BETHE-SALPETER EQUATION
    TJON, JA
    PHYSICAL REVIEW D, 1978, 18 (07): : 2565 - 2568
  • [10] Solving Bethe-Salpeter equation in Minkowski space
    Karmanov, VA
    Carbonell, J
    EUROPEAN PHYSICAL JOURNAL A, 2006, 27 (01): : 1 - 9