On the volume of non-central sections of a cube

被引:9
|
作者
Koenig, Hermann [1 ]
Rudelson, Mark [2 ]
机构
[1] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Volume; Non-central section; Hypercuhe; SLABS; INEQUALITY; BALL;
D O I
10.1016/j.aim.2019.106929
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q(n) be the cube of side length one centered at the origin in R-n, and let F be an affine (n - d)-dimensional subspace of R-n having distance to the origin less than or equal to 1/2 where 0 < d < n. We show that the (n - d)-dimensional volume of the section Q(n)boolean AND F is bounded below by a value c(d) depending only on the codimension d but not on the ambient dimension n or a particular subspace F. In the case of hyperplanes, d = 1, we show that c(1) = 1/17 is a possible choice. We also consider a complex analogue of this problem for a hyperplane section of the polydisc. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条