An infinite family of tight, not semi-fillable contact three-manifolds

被引:11
|
作者
Lisca, P [1 ]
Stipsicz, AI
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Hungarian Acad Sci, Renyi Inst Math, H-1053 Budapest, Hungary
来源
GEOMETRY & TOPOLOGY | 2003年 / 7卷
关键词
tight; fillable; contact structures;
D O I
10.2140/gt.2003.7.1055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an infinite family of virtually overtwisted tight contact structures discovered by Honda on certain circle bundles over surfaces admit no symplectic semi-fillings. The argument uses results of Mrowka, Ozsvath and Yu on the translation-invariant solutions to the Seiberg-Witten equations on cylinders and the non-triviality of the Kronheimer-Mrowka monopole invariants of symplectic fillings.
引用
收藏
页码:1055 / 1073
页数:19
相关论文
共 28 条