Some results for almost D-optimal experimental designs

被引:0
|
作者
Koukouvinos, C [1 ]
机构
[1] NATL TECH UNIV ATHENS,DEPT MATH,ZOGRAFOS 15773,ATHENS,GREECE
关键词
linear models; Hadamard matrix; excess; construction;
D O I
10.1016/0167-7152(95)00223-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of constructing first-order saturated designs that are optimal in some sense has received a great deal of attention in the literature. In experimental situations where n two-level factors are involved and it observations are taken, then the D-optimal first-order saturated design is an ii x ii +/-1 matrix with the maximum determinant In this paper almost D-optimal first-order saturated designs of order n = 1 mod4 are constructed using Hadamard matrices with maximum excess. The D-efficiency of these designs is studied and some numerical examples are given.
引用
收藏
页码:221 / 226
页数:6
相关论文
共 50 条