Integrable generalizations of oscillator and Coulomb systems via action-angle variables

被引:27
|
作者
Hakobyan, T. [2 ,3 ]
Lechtenfeld, O. [1 ]
Nersessian, A. [2 ]
Saghatelian, A. [2 ]
Yeghikyan, V. [2 ,4 ]
机构
[1] Leibniz Univ Hannover, D-30167 Hannover, Germany
[2] Yerevan State Univ, Yerevan 0025, Armenia
[3] Yerevan Phys Inst, Yerevan 0036, Armenia
[4] INFN Lab Nazl Frascati, I-00044 Frascati, Italy
关键词
DYNAMICAL SYMMETRIES; SPHERICAL GEOMETRY;
D O I
10.1016/j.physleta.2011.12.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Oscillator and Coulomb systems on N-dimensional spaces of constant curvature can be generalized by replacing their angular degrees of freedom with a compact integrable (N - 1)-dimensional system. We present the action-angle formulation of such models in terms of the radial degree of freedom and the action-angle variables of the angular subsystem. As an example, we construct the spherical and pseudospherical generalization of the two-dimensional superintegrable models introduced by Tremblay. Turbiner and Winternitz and by Post and Winternitz. We demonstrate the superintegrability of these systems and give their hidden constant of motion. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 50 条
  • [1] Quantum action-angle variables for the harmonic oscillator
    Lewis, HR
    Lawrence, WE
    Harris, JD
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (26) : 5157 - 5159
  • [2] Global action-angle variables for non-commutative integrable systems
    Fernandes, Rui Loja
    Laurent-Gengoux, Camille
    Vanhaecke, Pol
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (03) : 645 - 699
  • [3] Geometric quantization of completely integrable Hamiltonian systems in the action-angle variables
    Giachetta, G
    Mangiarotti, L
    Sardanashvily, G
    [J]. PHYSICS LETTERS A, 2002, 301 (1-2) : 53 - 57
  • [4] Action-angle variables for the purely nonlinear oscillator
    Ghosh, Aritra
    Bhamidipati, Chandrasekhar
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 167 - 172
  • [5] LINEARIZING 2-DIMENSIONAL INTEGRABLE SYSTEMS AND THE CONSTRUCTION OF ACTION-ANGLE VARIABLES
    VANHAECKE, P
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1992, 211 (02) : 265 - 313
  • [6] Comment on "Quantum action-angle variables for the harmonic oscillator"
    Smith, TB
    Vaccaro, JA
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (12) : 2745 - 2745
  • [7] ON ACTION-ANGLE VARIABLES
    BATES, L
    SNIATYCKI, J
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 120 (04) : 337 - 343
  • [8] ACTION-ANGLE COORDINATES AT SINGULARITIES FOR ANALYTIC INTEGRABLE SYSTEMS
    ITO, H
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1991, 206 (03) : 363 - 407
  • [9] Action-angle variables and novel superintegrable systems
    T. Hakobyan
    O. Lechtenfeld
    A. Nersessian
    A. Saghatelian
    V. Yeghikyan
    [J]. Physics of Particles and Nuclei, 2012, 43 : 577 - 582
  • [10] Action-angle Coordinates for Integrable Systems on Poisson Manifolds
    Laurent-Gengoux, Camille
    Miranda, Eva
    Vanhaecke, Pol
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (08) : 1839 - 1869