Copula, marginal distributions and model selection: a Bayesian note

被引:66
|
作者
Silva, Ralph dos Santos [1 ]
Lopes, Hedibert Freitas [2 ]
机构
[1] Univ New S Wales, Australian Sch Business, Sydney, NSW 2052, Australia
[2] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
关键词
copula; deviance information criterion; marginal distribution; measure of dependence; Monte Carlo study; skewness;
D O I
10.1007/s11222-008-9058-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Copula functions and marginal distributions are combined to produce multivariate distributions. We show advantages of estimating all parameters of these models using the Bayesian approach, which can be done with standard Markov chain Monte Carlo algorithms. Deviance-based model selection criteria are also discussed when applied to copula models since they are invariant under monotone increasing transformations of the marginals. We focus on the deviance information criterion. The joint estimation takes into account all dependence structure of the parameters' posterior distributions in our chosen model selection criteria. Two Monte Carlo studies are conducted to show that model identification improves when the model parameters are jointly estimated. We study the Bayesian estimation of all unknown quantities at once considering bivariate copula functions and three known marginal distributions.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [1] Copula, marginal distributions and model selection: a Bayesian note
    Ralph dos Santos Silva
    Hedibert Freitas Lopes
    [J]. Statistics and Computing, 2008, 18 : 313 - 320
  • [2] Bayesian copula selection
    Huard, David
    Evin, Guillaume
    Favre, Anne-Catherine
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 809 - 822
  • [3] Bayesian Model Selection, the Marginal Likelihood, and Generalization
    Lotfi, Sanae
    Izmailov, Pavel
    Benton, Gregory
    Goldblum, Micah
    Wilson, Andrew Gordon
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [4] Testing of the homogeneity of marginal distributions in copula models
    Bagdonavicius, Vilijandas
    Malov, Sergey
    Nikulin, Mikhail
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) : 445 - 450
  • [5] Bayesian marginal model selection for low rank sources
    Radich, BM
    Buckley, KM
    [J]. NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1998, : 268 - 271
  • [7] Estimating Risk with Sarmanov Copula and Nonparametric Marginal Distributions
    Bahraoui, Zuhair
    Bolance, Catalina
    Alemany, Ramon
    [J]. MODELING AND SIMULATION IN ENGINEERING, ECONOMICS, AND MANAGEMENT, 2013, 145 : 91 - 98
  • [8] Bayesian model selection in finite mixtures by marginal density decompositions
    Ishwaran, H
    James, LF
    Sun, JY
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1316 - 1332
  • [9] Improving Marginal Likelihood Estimation for Bayesian Phylogenetic Model Selection
    Xie, Wangang
    Lewis, Paul O.
    Fan, Yu
    Kuo, Lynn
    Chen, Ming-Hui
    [J]. SYSTEMATIC BIOLOGY, 2011, 60 (02) : 150 - 160
  • [10] Bayesian model selection for D-vine pair-copula constructions
    Min, Aleksey
    Czado, Claudia
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (02): : 239 - 258