VISUAL OBJECT RECOGNITION USING DAISY DESCRIPTOR

被引:0
|
作者
Zhu, Chao [1 ]
Bichot, Charles-Edmond [1 ]
Chen, Liming [1 ]
机构
[1] Univ Lyon, CNRS, Ecole Cent Lyon, LIRIS,UMR5205, F-69134 Lyon, France
关键词
Visual object recognition; local image descriptors; DAISY; SIFT; LOCAL FEATURES;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Visual content description is a key issue for the task of machine-based visual object categorization (VOC). A good visual descriptor should be both discriminative enough and computationally efficient while possessing some properties of robustness to viewpoint changes and lighting condition variations. The recent literature has featured local image descriptors, e. g. SIFT, as the main trend in VOC. However, it is well known that SIFT is computationally expensive, especially when the number of objects/concepts and learning data increase significantly. In this paper, we investigate the DAISY, which is a new fast local descriptor introduced for wide baseline matching problem, in the context of VOC. We carefully evaluate and compare the DAISY descriptor with SIFT both in terms of recognition accuracy and computation complexity on two standard image benchmarks - Caltech 101 and PASCAL VOC 2007. The experimental results show that DAISY outperforms the state-of-the-art SIFT while using shorter descriptor length and operating 3 times faster. When displaying a similar recognition accuracy to SIFT, DAISY can operate 12 times faster.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Handwritten Digit Recognition using DAISY Descriptor: A Study
    Chatterjee, Agneet
    Malakar, Samir
    Sarkar, Ram
    Nasipuri, Mita
    [J]. PROCEEDINGS OF 2018 FIFTH INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2018,
  • [2] Action recognition using 3D DAISY descriptor
    Cao, Xiaochun
    Zhang, Hua
    Deng, Chao
    Liu, Qiguang
    Liu, Hanyu
    [J]. MACHINE VISION AND APPLICATIONS, 2014, 25 (01) : 159 - 171
  • [3] Action recognition using 3D DAISY descriptor
    Xiaochun Cao
    Hua Zhang
    Chao Deng
    Qiguang Liu
    Hanyu Liu
    [J]. Machine Vision and Applications, 2014, 25 : 159 - 171
  • [4] The Neural-SIFT Feature Descriptor for Visual Vocabulary Object Recognition
    Jansen, Sybren
    Shantia, Amirhosein
    Wiering, Marco A.
    [J]. 2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [5] Hyperspectral Image Classification using Daisy Descriptor
    Meric, Merve
    Igit, Sevil
    Erturk, Sarp
    [J]. 2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2450 - 2453
  • [6] NOVEL VISUAL OBJECT DESCRIPTOR USING SURF AND CLUSTERING ALGORITHMS
    Grycuk, Rafal
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2016, 15 (03) : 37 - 46
  • [7] A Hybrid Shape Descriptor for Object Recognition
    Xu, Haoran
    Yang, Jianyu
    Tang, Yazhe
    Li, Youfu
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 96 - 101
  • [8] Duplication forgery detection using improved DAISY descriptor
    Guo, Jing-Ming
    Liu, Yun-Fu
    Wu, Zong-Jhe
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (02) : 707 - 714
  • [9] Fast Generalized Fourier Descriptor for object recognition of image using CUDA
    Haythem, Bahri
    Mohamed, Hallek
    Marwa, Chouchene
    Fatma, Sayadi
    Mohamed, Atri
    [J]. 2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [10] Robust Local Descriptor for Color Object Recognition
    Hamdini, Rabah
    Diffellah, Nacira
    Namane, Abderrahmane
    [J]. TRAITEMENT DU SIGNAL, 2019, 36 (06) : 471 - 482