HIGHNESS PROPERTIES CLOSE TO PA COMPLETENESS

被引:8
|
作者
Greenberg, Noam [1 ]
Miller, Joseph S. [2 ]
Nies, Andre [3 ]
机构
[1] Victoria Univ Wellington, Sch Math & Stat, POB 600, Wellington 6140, New Zealand
[2] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
[3] Univ Auckland, Dept Comp Sci, Private Bag 92019, Auckland 1142, New Zealand
基金
美国国家科学基金会;
关键词
RANDOMNESS; LOWNESS;
D O I
10.1007/s11856-021-2200-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose we are given a computably enumerable object. We are interested in the strength of oracles that can compute an object that approximates this c.e. object. It turns out that in many cases arising from algorithmic randomness or computable analysis, the resulting highness property is either close to, or equivalent to being PA complete. We examine, for example, majorizing a c.e. martingale by an oracle-computable martingale, computing lower bounds for two variants of Kolmogorov complexity, and computing a subtree of positive measure with no dead-ends of a given Pi(0)(1) tree of positive measure. We separate PA completeness from the latter property, called the continuous covering property. We also separate the corresponding principles in reverse mathematics.
引用
收藏
页码:419 / 465
页数:47
相关论文
共 50 条
  • [1] Highness properties close to PA completeness
    Noam Greenberg
    Joseph S. Miller
    André Nies
    Israel Journal of Mathematics, 2021, 244 : 419 - 465
  • [2] Lowness and highness properties for randomness notions
    Franklin, Johanna N. Y.
    PROCEEDINGS OF THE 10TH ASIAN LOGIC CONFERENCE, 2010, : 124 - 151
  • [3] CLOSE UPS - PINCH,JR, ELBY,PA
    ZIMMER, J
    REVUE DU CINEMA, 1980, (347): : 143 - 143
  • [4] COMPLETENESS PROPERTIES AND BAIRE SPACES
    AARTS, JM
    LUTZER, DJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A805 - A805
  • [5] COMPLETENESS PROPERTIES OF PERTURBED SEQUENCES
    BURR, SA
    ERDOS, P
    JOURNAL OF NUMBER THEORY, 1981, 13 (04) : 446 - 455
  • [6] DISJOINT SEQUENCES AND COMPLETENESS PROPERTIES
    BUSKES, GJHM
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1985, 88 (01): : 11 - 19
  • [7] ANALYTIC PROPERTIES OF RESOLVENTS AND COMPLETENESS
    FONDA, L
    GHIRARDI, GC
    WEBER, T
    RIMINI, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (09) : 1643 - &
  • [8] TOPOLOGICAL PROPERTIES RELATED TO COMPLETENESS
    FLETCHER, P
    LINDGREN, WF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A340 - A340
  • [9] Proof-theoretic modal pa-completeness II: The syntactic countermodel
    Gentilini P.
    Studia Logica, 1999, 63 (2) : 245 - 268
  • [10] Proof-theoretic modal PA-completeness III: The syntactic proof
    Gentilini P.
    Studia Logica, 1999, 63 (3) : 301 - 310