MULTI-OBJECTIVE EVOLUTION OF THE PARETO OPTIMAL SET OF NEURAL NETWORK CLASSIFIER ENSEMBLES

被引:3
|
作者
Engen, Vegard [1 ]
Vincent, Jonathan [1 ]
Schierz, Amanda C. [1 ]
Phalp, Keith [1 ]
机构
[1] Bournemouth Univ, Software Syst Res Ctr, Poole BH12 5BB, Dorset, England
关键词
Multi-objective optimisation; genetic algorithms; classifier combination; ensembles; class imbalance; ALGORITHMS; DIVERSITY; STRENGTH;
D O I
10.1109/ICMLC.2009.5212485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing research demonstrates that classifier ensembles can improve on the performance of the single 'best' classifier. However, for some problems, although the ensemble may obtain a lower classification error than any of the base classifiers, it may not provide the desired trade-off among the classification rates of different classes. In many applications, classes are not of equal importance, but the preferred trade-off may be hard to quantify a priori. In this paper, we adopt multi-objective techniques to create Pareto optimal sets of classifiers and ensembles, offering the user the choice of preferred trade-off. We also demonstrate that the common practice of developing a single ensemble from an arbitrary (diverse) selection of base classifiers will be inferior to a large proportion of those classifiers.
引用
收藏
页码:74 / 79
页数:6
相关论文
共 50 条
  • [1] Classifier ensembles for image identification using multi-objective Pareto features
    Albukhanajer, Wissam A.
    Jin, Yaochu
    Briffa, Johann A.
    [J]. NEUROCOMPUTING, 2017, 238 : 316 - 327
  • [2] Dynamic multi-objective evolution of classifier ensembles for video face recognition
    Connolly, Jean-Francois
    Granger, Eric
    Sabourin, Robert
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (06) : 3149 - 3166
  • [3] Pruning and ranking the Pareto optimal set, application for the dynamic multi-objective network design problem
    Wismans, Luc J. J.
    Brands, T.
    Van Berkum, Eric C.
    Bliemer, Michiel C. J.
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2014, 48 (06) : 588 - 607
  • [4] Multi-objective optimization of a welding process by the estimation of the Pareto optimal set
    Torres-Trevino, Luis M.
    Reyes-Valdes, Felipe A.
    Lopez, Victor
    Praga-Alejo, Rolando
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) : 8045 - 8053
  • [5] Selecting the Best Artificial Neural Network Model from a Multi-Objective Differential Evolution Pareto Front
    Cruz-Ramirez, M.
    Fernandez, J. C.
    Fernandez-Navarro, F.
    Sanchez-Monedero, J.
    Hervas-Martinez, C.
    [J]. 2011 IEEE SYMPOSIUM ON DIFFERENTIAL EVOLUTION (SDE), 2011, : 96 - 103
  • [6] Exploring Multi-Objective Optimization for Multi-Label Classifier Ensembles
    Saha, Sriparna
    Sarkar, Debanjan
    Kramer, Stefan
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2753 - 2760
  • [7] A multi-objective selection procedure of determining a Pareto set
    Chen, E. Jack
    Lee, Lod Hay
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2009, 36 (06) : 1872 - 1879
  • [8] A genetic algorithm for the pareto optimal solution set of multi-objective shortest path problem
    胡仕成
    徐晓飞
    战德臣
    [J]. Journal of Harbin Institute of Technology., 2005, (06) - 726
  • [9] A constrained multi-objective evolutionary algorithm with Pareto estimation via neural network
    Liu, Zongli
    Zhao, Peng
    Cao, Jie
    Zhang, Jianlin
    Chen, Zuohan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [10] DEEP CONVOLUTIONAL NEURAL NETWORKS FOR PARETO OPTIMAL FRONT OF MULTI-OBJECTIVE OPTIMIZATION PROBLEM
    Liu, Ruilin
    Zhang, Tao
    Chen, Fang
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (04) : 833 - 846