A globally convergent approach for blind MIMO adaptive deconvolution

被引:35
|
作者
Touzni, A [1 ]
Fijalkow, I
Larimore, MG
Treichler, JR
机构
[1] Univ Cergy Pontoise, Equipe Traitement Singal & Images, ENSEA, ETIS, Cergy Pontoise, France
[2] Appl Signal Technol Inc, Sunnyvale, CA 94086 USA
关键词
blind adaptive source separation; constant modulus criterion; multiple input/multiple output convolutional systems;
D O I
10.1109/78.923299
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We discuss the blind deconvolution of multiple input/multiple output (MIMO) linear convolutional mixtures and propose a set of hierarchical criteria motivated by the maximum entropy principle, The proposed criteria are based on the constant-modules (CM) criterion in order to guarantee that all minima achieve perfectly restoration of different sources. The approach is moreover robust to errors in channel order estimation. practical implementation is addressed by a stochastic adaptive algorithm with a low computational cost. Complete convergence proofs, based on the characterization of all extrema, are provided. The efficiency of the proposed method is illustrated by numerical simulations.
引用
收藏
页码:1166 / 1178
页数:13
相关论文
共 50 条
  • [1] A globally convergent approach for blind MIMO adaptive deconvolution
    Touzni, A
    Fijalkow, I
    Larimore, M
    Treichler, JR
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2385 - 2388
  • [2] GLOBALLY CONVERGENT ADAPTIVE BLIND FILTERS AND BLIND EQUALIZERS FOR MIXED-PHASE CHANNELS
    TUGNAIT, JK
    IEE PROCEEDINGS-COMMUNICATIONS, 1994, 141 (06): : 390 - 395
  • [3] A hybrid learning approach to blind deconvolution of MIMO systems
    Choi, S
    Cichocki, A
    PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, : 292 - 295
  • [4] A convergent least-squares regularized blind deconvolution approach
    Cornelio, Anastasia
    Porta, Federica
    Prato, Marco
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 173 - 186
  • [5] A GLOBALLY CONVERGENT ADAPTIVE PREDICTOR
    GOODWIN, GC
    RAMADGE, PJ
    CAINES, PE
    AUTOMATICA, 1981, 17 (01) : 135 - 140
  • [6] Adaptive super-exponential algorithms for blind deconvolution of MIMO systems
    Kohno, K
    Inouye, Y
    Kawamoto, M
    Okamoto, T
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, 2004, : 680 - 683
  • [7] Hybrid learning approach to blind deconvolution of linear MIMO systems
    Choi, S
    Cichocki, A
    ELECTRONICS LETTERS, 1999, 35 (17) : 1429 - 1430
  • [8] A globally convergent CNU-based approach to blind multiuser detection
    Liu, P
    Xu, ZY
    THIRTY-SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS - CONFERENCE RECORD, VOLS 1 AND 2, CONFERENCE RECORD, 2002, : 634 - 638
  • [9] A convergent blind deconvolution method for post-adaptive-optics astronomical imaging
    Prato, M.
    La Camera, A.
    Bonettini, S.
    Bertero, M.
    INVERSE PROBLEMS, 2013, 29 (06)
  • [10] Referenced Contrast: A New Approach to the Blind Deconvolution of MIMO Channels
    Taoufiki, Manal
    Adibt, Abdellah
    Aboutajdine, Driss
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2006, 6 (3B): : 87 - 91