Shallow potential wells for the Schrodinger equation and water waves

被引:0
|
作者
Zhevandrov, P [1 ]
Merzon, A [1 ]
机构
[1] Univ Michoacan, Inst Phys & Math, Morelia, Michoacan, Mexico
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a simple method for constructing asymptotics of eigenfunctions for the Schrodinger equation with a shallow potential well and its generalization to the problem of water waves trapped by an underwater ridge.
引用
收藏
页码:589 / 598
页数:10
相关论文
共 50 条
  • [1] Shallow potential wells for the discrete Schrodinger equation
    Rodriguez-Ceballos, JA
    Zhevandrov, PN
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 857 - 861
  • [2] Dynamics of shallow water waves with kawahara equation
    El-Akrmi, Soumaya
    Toumi, Salah
    El-Akrmi, Abdulssetar
    Suarez, Pablo
    Triki, Houria
    Biswas, Anjan
    Belic, Milivoj R.
    [J]. Journal of Computational and Theoretical Nanoscience, 2015, 12 (12) : 5577 - 5586
  • [3] Dynamics of shallow water waves with Boussinesq equation
    Jawad, A. J. M.
    Petkovic, M. D.
    Laketa, P.
    Biswas, A.
    [J]. SCIENTIA IRANICA, 2013, 20 (01) : 179 - 184
  • [4] Exact solutions of the Schrodinger equation for another class of hyperbolic potential wells
    Wang, Xiao-Hua
    Chen, Chang-Yuan
    You, Yuan
    Sun, Dong-Sheng
    Lu, Fa-Lin
    Dong, Shi-Hai
    [J]. PHYSICA SCRIPTA, 2023, 98 (05)
  • [5] The Numerical Solution of Boussinesq Equation for Shallow Water Waves
    Patel, Prashant
    Kumar, Prashant
    Rajni
    [J]. ADVANCEMENTS IN MATHEMATICS AND ITS EMERGING AREAS, 2020, 2214
  • [6] Orbital stability of solitary waves for a shallow water equation
    Constantin, A
    Molinet, L
    [J]. PHYSICA D, 2001, 157 (1-2): : 75 - 89
  • [7] A study of shallow water waves with Gardner's equation
    Krishnan, E. V.
    Triki, Houria
    Labidi, Manel
    Biswas, Anjan
    [J]. NONLINEAR DYNAMICS, 2011, 66 (04) : 497 - 507
  • [8] Equation on spatial variation of shallow water waves amplitude
    Lian-gui Y.
    Yi-jun H.
    [J]. Chinese Journal of Oceanology and Limnology, 1998, 16 (3): : 221 - 224
  • [9] A study of shallow water waves with Gardner’s equation
    E. V. Krishnan
    Houria Triki
    Manel Labidi
    Anjan Biswas
    [J]. Nonlinear Dynamics, 2011, 66 : 497 - 507
  • [10] On Traveling Waves of the Nonlinear Schrodinger Equation Escaping a Potential Well
    Naumkin, Ivan
    Raphael, Pierre
    [J]. ANNALES HENRI POINCARE, 2020, 21 (05): : 1677 - 1758