The Streptochaeta Genome and the Evolution of the Grasses

被引:11
|
作者
Seetharam, Arun S. [1 ]
Yu, Yunqing [2 ]
Belanger, Sebastien [2 ]
Clark, Lynn G. [1 ]
Meyers, Blake C. [2 ,3 ]
Kellogg, Elizabeth A. [2 ]
Hufford, Matthew B. [1 ]
机构
[1] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA
[2] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA
[3] Univ Missouri, Div Plant Sci, Columbia, MO USA
来源
关键词
Streptochaeta angustifolia; grass evolution; spikelet; small RNA; APETALA2-like; MERISTEM CELL FATE; TRANSCRIPTION FACTOR; ANTHER DEVELOPMENT; GENE-EXPRESSION; RICE GENOME; SMALL RNAS; BABY-BOOM; MICRORNA; ANNOTATION; PHYLOGENY;
D O I
10.3389/fpls.2021.710383
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In this work, we sequenced and annotated the genome of Streptochaeta angustifolia, one of two genera in the grass subfamily Anomochlooideae, a lineage sister to all other grasses. The final assembly size is over 99% of the estimated genome size. We find good collinearity with the rice genome and have captured most of the gene space. Streptochaeta is similar to other grasses in the structure of its fruit (a caryopsis or grain) but has peculiar flowers and inflorescences that are distinct from those in the outgroups and in other grasses. To provide tools for investigations of floral structure, we analyzed two large families of transcription factors, AP2-like and R2R3 MYBs, that are known to control floral and spikelet development in rice and maize among other grasses. Many of these are also regulated by small RNAs. Structure of the gene trees showed that the well documented whole genome duplication at the origin of the grasses (rho) occurred before the divergence of the Anomochlooideae lineage from the lineage leading to the rest of the grasses (the spikelet clade) and thus that the common ancestor of all grasses probably had two copies of the developmental genes. However, Streptochaeta (and by inference other members of Anomochlooideae) has lost one copy of many genes. The peculiar floral morphology of Streptochaeta may thus have derived from an ancestral plant that was morphologically similar to the spikelet-bearing grasses. We further identify 114 loci producing microRNAs and 89 loci generating phased, secondary siRNAs, classes of small RNAs known to be influential in transcriptional and post-transcriptional regulation of several plant functions.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Phylogenomics and Plastome Evolution of Tropical Forest Grasses (Leptaspis, Streptochaeta: Poaceae)
    Burke, Sean V.
    Lin, Choun-Sea
    Wysocki, William P.
    Clark, Lynn G.
    Duvall, Melvin R.
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [2] Evolution of genome size in the grasses
    Caetano-Anollés, G
    CROP SCIENCE, 2005, 45 (05) : 1809 - 1816
  • [3] CEREAL GENOME EVOLUTION - GRASSES, LINE UP AND FORM A CIRCLE
    MOORE, G
    DEVOS, KM
    WANG, Z
    GALE, MD
    CURRENT BIOLOGY, 1995, 5 (07) : 737 - 739
  • [4] Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae
    Luo, M. C.
    Deal, K. R.
    Akhunov, E. D.
    Akhunova, A. R.
    Anderson, O. D.
    Anderson, J. A.
    Blake, N.
    Clegg, M. T.
    Coleman-Derr, D.
    Conley, E. J.
    Crossman, C. C.
    Dubcovsky, J.
    Gill, B. S.
    Gu, Y. Q.
    Hadam, J.
    Heo, H. Y.
    Huo, N.
    Lazo, G.
    Ma, Y.
    Matthews, D. E.
    McGuire, P. E.
    Morrell, P. L.
    Qualset, C. O.
    Renfro, J.
    Tabanao, D.
    Talbert, L. E.
    Tian, C.
    Toleno, D. M.
    Warburton, M. L.
    You, F. M.
    Zhang, W.
    Dvorak, J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (37) : 15780 - 15785
  • [5] The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution
    Kim, E. S.
    Bolsheva, N. L.
    Samatadze, T. E.
    Nosov, N. N.
    Nosova, I. V.
    Zelenin, A. V.
    Punina, E. O.
    Muravenko, O. V.
    Rodionov, A. V.
    RUSSIAN JOURNAL OF GENETICS, 2009, 45 (11) : 1329 - 1337
  • [6] Genome sizes of grasses (Poaceae), chromosomal evolution, paleogenomics and the ancestral grass karyotype (AGK)
    Tkach, Natalia
    Winterfeld, Grit
    Roeser, Martin
    PLANT SYSTEMATICS AND EVOLUTION, 2025, 311 (01)
  • [7] The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution
    E. S. Kim
    N. L. Bolsheva
    T. E. Samatadze
    N. N. Nosov
    I. V. Nosova
    A. V. Zelenin
    E. O. Punina
    O. V. Muravenko
    A. V. Rodionov
    Russian Journal of Genetics, 2009, 45 : 1329 - 1337
  • [8] Genome evolution in alpine oat-like grasses through homoploid hybridization and polyploidy
    Winterfeld, Grit
    Woelk, Alexandra
    Roeser, Martin
    AOB PLANTS, 2016, 8
  • [9] EVOLUTION AND DISTRIBUTION OF GRASSES
    CLAYTON, WD
    ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1981, 68 (01) : 5 - 14
  • [10] The Sorghum bicolor genome and the diversification of grasses
    Paterson, Andrew H.
    Bowers, John E.
    Bruggmann, Remy
    Dubchak, Inna
    Grimwood, Jane
    Gundlach, Heidrun
    Haberer, Georg
    Hellsten, Uffe
    Mitros, Therese
    Poliakov, Alexander
    Schmutz, Jeremy
    Spannagl, Manuel
    Tang, Haibao
    Wang, Xiyin
    Wicker, Thomas
    Bharti, Arvind K.
    Chapman, Jarrod
    Feltus, F. Alex
    Gowik, Udo
    Grigoriev, Igor V.
    Lyons, Eric
    Maher, Christopher A.
    Martis, Mihaela
    Narechania, Apurva
    Otillar, Robert P.
    Penning, Bryan W.
    Salamov, Asaf A.
    Wang, Yu
    Zhang, Lifang
    Carpita, Nicholas C.
    Freeling, Michael
    Gingle, Alan R.
    Hash, C. Thomas
    Keller, Beat
    Klein, Patricia
    Kresovich, Stephen
    McCann, Maureen C.
    Ming, Ray
    Peterson, Daniel G.
    Mehboob-ur-Rahman
    Ware, Doreen
    Westhoff, Peter
    Mayer, Klaus F. X.
    Messing, Joachim
    Rokhsar, Daniel S.
    NATURE, 2009, 457 (7229) : 551 - 556