Spectral theorem for quaternionic normal operators: Multiplication form

被引:3
|
作者
Ramesh, G. [1 ]
Kumar, P. Santhosh [2 ]
机构
[1] IIT Hyderabad, Dept Math, Kandi 502205, Telangana, India
[2] Indian Stat Inst Bangalore, Stat & Math Unit, Bangalore 560059, Karnataka, India
来源
关键词
Slice complex plane; Quaternionic Hilbert space; Quaternionic normal operator; Spectral measure; Spectral theorem; Functional calculus;
D O I
10.1016/j.bulsci.2020.102840
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a right quaternionic Hilbert space and let T be a quaternionic normal operator with domain D(T) subset of H. We prove that there exists a Hilbert basis N of H, a measure space (Omega(0), v), a unitary operator U : H -> L-2 (Omega(0); H; v) and a v-measurable function eta : Omega(0) -> C such that Tx = U* M(eta)Ux , for all x is an element of D(T) where M-eta is the multiplication operator on L-2(Omega(0); H; v) induced by eta with U (D(T)) subset of D(M-eta). We show that every complex Hilbert space can be seen as a slice Hilbert space of some quaternionic Hilbert space and establish the main result by reducing the problem to the complex case then lift it to the quaternion case. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条