Graphene and the universality of the quantum Hall effect

被引:0
|
作者
Tzalenchuk, A. [1 ]
Janssen, T. J. B. M. [1 ]
Kazakova, O. [1 ]
Williams, J. M. [1 ]
Kubatkin, S. [2 ,3 ]
Lara-Avila, S. [2 ,3 ]
Moth-Poulsen, K. [2 ,3 ]
Yakimova, R. [4 ]
Bjornholm, T. [5 ]
Fletcher, N. E. [6 ]
Goebel, R. [6 ]
Kopylov, S. [7 ]
Fal'ko, V. [7 ]
机构
[1] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
[2] Chalmers, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[3] Chalmers, Dept Chem, S-41296 Gothenburg, Sweden
[4] Linkoping Univ, Dept Phys Schem & Biol, S-58183 Linkoping, Sweden
[5] Univ Copenhagen, Nano Sci Ctr, Dept Chem, DK-2100 Copenhagen, Denmark
[6] Bur Int Poids & Mesures, F-92312 Sevres, France
[7] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
来源
关键词
RESISTANCE STANDARD; GALLIUM-ARSENIDE; FREQUENCY; DYNAMICS; SILICON; SPEED; FILMS; LIGHT;
D O I
10.3254/978-1-61499-326-1-323
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect-comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK = h/e(2) = 25 812.807 443 4 (84) Omega (Mohr P. J. et al., Rev. Mod. Phys., 84 (2012) 1527), the resistance quantum. Despite 30 years of research into the quantum Hall effect, the level of precision necessary for metrology, a few parts per billion, has been achieved only in silicon and III-V heterostructure devices. In this lecture we show that graphene - a single layer of carbon atoms - beats these well-established semiconductor materials as the system of choice for the realisation of the quantum resistance standard. Here we shall briefly describe graphene technology, discuss the structure and electronic properties of graphene, including the unconventional quantum Hall effect and then present in detail the route, which led to the most precise quantum Hall resistance universality test ever performed.
引用
收藏
页码:323 / 350
页数:28
相关论文
共 50 条
  • [1] Graphene, universality of the quantum Hall effect and redefinition of the SI system
    Janssen, T. J. B. M.
    Fletcher, N. E.
    Goebel, R.
    Williams, J. M.
    Tzalenchuk, A.
    Yakimova, R.
    Kubatkin, S.
    Lara-Avila, S.
    Falko, V. I.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [2] UNIVERSALITY IN THE FRACTIONAL QUANTUM HALL-EFFECT
    FRADKIN, E
    LOPEZ, A
    NUCLEAR PHYSICS B, 1993, : 67 - 91
  • [3] ON THE QUANTUM HALL EFFECT IN GRAPHENE
    Fujita, Shigeji
    Kim, Jeong-Hyuk
    Ito, Kei
    De Llano, Manuel
    CONDENSED MATTER THEORIES, VOL 24, 2010, : 197 - +
  • [4] Quantum Hall effect in graphene
    Koshino, Mikito
    Ando, Tsuneya
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1140 - 1144
  • [5] THE QUANTUM HALL EFFECT IN GRAPHENE
    Cea, Paolo
    MODERN PHYSICS LETTERS B, 2012, 26 (13):
  • [6] Quantum Hall effect in graphene
    Jiang, Z.
    Zhang, Y.
    Tan, Y.-W.
    Stormer, H. L.
    Kim, P.
    SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 14 - 19
  • [7] ON THE QUANTUM HALL EFFECT IN GRAPHENE
    Fujita, Shigeji
    Kim, Jeong-Hyuk
    Ito, Kei
    De Llano, Manuel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (20-21): : 4129 - 4137
  • [8] Quantum Hall effect in graphene
    Novoselov, K. S.
    Geim, A. K.
    2008 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS DIGEST, 2008, : 488 - 488
  • [9] Universality test of the quantum Hall effect on topological insulator
    Misawa, Tetsuro
    Fukuyama, Yasuhiro
    Okazaki, Yuma
    Nakamura, Shuji
    Nasaka, Nariaki
    Sasagawa, Takao
    Kaneko, Nobu-Hisa
    2016 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2016), 2016,
  • [10] Modular invariance, universality and crossover in the quantum Hall effect
    Dolan, BP
    NUCLEAR PHYSICS B, 1999, 554 (03) : 487 - 513