The q-Painleve V equation and its geometrical description

被引:11
|
作者
Ramani, A [1 ]
Grammaticos, B
Ohta, Y
机构
[1] Ecole Polytech, CNRS, CPT, UMT 7644, F-91128 Palaiseau, France
[2] Univ Paris 07, GMPIB, F-75251 Paris, France
[3] Hiroshima Univ, Fac Engn, Dept Math Appl, Higashihiroshima 7398527, Japan
来源
关键词
D O I
10.1088/0305-4470/34/11/338
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the q-Painleve V equation which can be obtained from the degeneration of the q-P-VI (in the form of the asymmetric q-P-III) equation and present its geometrical description. Based on the bilinear formulation we obtain the equations for the multi-dimensional tau -functions of q-P-V (in the form of nonautonomous Hirota-Miwa systems) which lives in the weight lattice of the A(4) affine Weyl group. This geometrical approach furnishes in a straightforward way the Miuras and the Schlesingers of q-P-V.
引用
收藏
页码:2505 / 2513
页数:9
相关论文
共 50 条
  • [1] On the rational solutions of q-Painleve V equation
    Masuda, T
    NAGOYA MATHEMATICAL JOURNAL, 2003, 169 : 119 - 143
  • [2] Middle Convolution and q-Painleve Equation
    Sasaki, Shoko
    Takagi, Shun
    Takemura, Kouichi
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [3] A study on the fourth q-Painleve equation
    Kajiwara, K
    Noumi, M
    Yamada, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (41): : 8563 - 8581
  • [4] On symmetric solutions of the fourth q-Painleve equation
    Joshi, Nalini
    Roffelsen, Pieter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (18)
  • [5] q-Painleve equation from Virasoro constraints
    Mironov, A.
    Morozov, A.
    PHYSICS LETTERS B, 2018, 785 : 207 - 210
  • [6] Special Solutions to the Second q-Painleve Equation
    Ohyama, Yousuke
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1714 - 1717
  • [7] Degeneration through coalescence of the q-Painleve VI equation
    Grammaticos, B
    Ohta, Y
    Ramani, A
    Sakai, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (15): : 3545 - 3558
  • [8] Degeneration through coalescence of the q-Painleve VI equation
    Grammaticos, B.
    Ohta, Y.
    Ramani, A.
    Sakai, H.
    Journal of Physics A: Mathematical and General, 31 (15):
  • [9] Non-commutative q-Painleve VI equation
    Doliwa, Adam
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (03)
  • [10] Transcendence of solutions of q-Painleve equation of type A7
    Nishioka, Seiji
    AEQUATIONES MATHEMATICAE, 2010, 79 (1-2) : 1 - 12