Analysis of Human and Mouse Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. What Is in the Plate?

被引:44
|
作者
Boue, Stephanie [1 ]
Paramonov, Ida [1 ]
Jose Barrero, Maria [1 ]
Izpisua Belmonte, Juan Carlos [1 ,2 ]
机构
[1] Ctr Regenerat Med Barcelona CMRB, Barcelona, Spain
[2] Salk Inst Biol Studies, Gene Express Lab, La Jolla, CA 92037 USA
来源
PLOS ONE | 2010年 / 5卷 / 09期
关键词
GENE-EXPRESSION; IPS CELLS; CHROMATIN-STRUCTURE; DEFINED FACTORS; GENERATION; FIBROBLASTS; INDUCTION; MURINE; MICE; DIFFERENTIATION;
D O I
10.1371/journal.pone.0012664
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
After the hope and controversy brought by embryonic stem cells two decades ago for regenerative medicine, a new turn has been taken in pluripotent cells research when, in 2006, Yamanaka's group reported the reprogramming of fibroblasts to pluripotent cells with the transfection of only four transcription factors. Since then many researchers have managed to reprogram somatic cells from diverse origins into pluripotent cells, though the cellular and genetic consequences of reprogramming remain largely unknown. Furthermore, it is still unclear whether induced pluripotent stem cells (iPSCs) are truly functionally equivalent to embryonic stem cells (ESCs) and if they demonstrate the same differentiation potential as ESCs. There are a large number of reprogramming experiments published so far encompassing genome-wide transcriptional profiling of the cells of origin, the iPSCs and ESCs, which are used as standards of pluripotent cells and allow us to provide here an in-depth analysis of transcriptional profiles of human and mouse cells before and after reprogramming. When compared to ESCs, iPSCs, as expected, share a common pluripotency/self-renewal network. Perhaps more importantly, they also show differences in the expression of some genes. We concentrated our efforts on the study of bivalent domain-containing genes (in ESCs) which are not expressed in ESCs, as they are supposedly important for differentiation and should possess a poised status in pluripotent cells, i.e. be ready to but not yet be expressed. We studied each iPSC line separately to estimate the quality of the reprogramming and saw a correlation of the lowest number of such genes expressed in each respective iPSC line with the stringency of the pluripotency test achieved by the line. We propose that the study of expression of bivalent domain-containing genes, which are normally silenced in ESCs, gives a valuable indication of the quality of the iPSC line, and could be used to select the best iPSC lines out of a large number of lines generated in each reprogramming experiment.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Efficiency of reprogramming human somatic cells into induced pluripotent stem cells (iPSCs)
    Tada, Takashi
    GENES & GENETIC SYSTEMS, 2010, 85 (06) : 442 - 442
  • [2] Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells
    Minal Patel
    Shuying Yang
    Stem Cell Reviews and Reports, 2010, 6 : 367 - 380
  • [3] Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells
    Patel, Minal
    Yang, Shuying
    STEM CELL REVIEWS AND REPORTS, 2010, 6 (03) : 367 - 380
  • [4] Chemical reprogramming of human somatic cells to pluripotent stem cells
    Jingyang Guan
    Guan Wang
    Jinlin Wang
    Zhengyuan Zhang
    Yao Fu
    Lin Cheng
    Gaofan Meng
    Yulin Lyu
    Jialiang Zhu
    Yanqin Li
    Yanglu Wang
    Shijia Liuyang
    Bei Liu
    Zirun Yang
    Huanjing He
    Xinxing Zhong
    Qijing Chen
    Xu Zhang
    Shicheng Sun
    Weifeng Lai
    Yan Shi
    Lulu Liu
    Lipeng Wang
    Cheng Li
    Shichun Lu
    Hongkui Deng
    Nature, 2022, 605 : 325 - 331
  • [5] Chemical reprogramming of human somatic cells to pluripotent stem cells
    Guan, Jingyang
    Wang, Guan
    Wang, Jinlin
    Zhang, Zhengyuan
    Fu, Yao
    Cheng, Lin
    Meng, Gaofan
    Lyu, Yulin
    Zhu, Jialiang
    Li, Yanqin
    Wang, Yanglu
    Liuyang, Shijia
    Liu, Bei
    Yang, Zirun
    He, Huanjing
    Zhong, Xinxing
    Chen, Qijing
    Zhang, Xu
    Sun, Shicheng
    Lai, Weifeng
    Shi, Yan
    Liu, Lulu
    Wang, Lipeng
    Li, Cheng
    Lu, Shichun
    Deng, Hongkui
    NATURE, 2022, 605 (7909) : 325 - +
  • [6] NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells
    Luo, Min
    Ling, Te
    Xie, Wenbing
    Sun, He
    Zhou, Yonggang
    Zhu, Qiaoyun
    Shen, Meili
    Zong, Le
    Lyu, Guoliang
    Zhao, Yun
    Ye, Tao
    Gu, Jun
    Tao, Wei
    Lu, Zhigang
    Grummt, Ingrid
    STEM CELLS, 2013, 31 (07) : 1278 - 1286
  • [7] Improving the Reprogramming Efficiency of Somatic Cells to Induced Pluripotent Stem Cells
    Hu, Chen-Xia
    Li, Lan-Juan
    CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION, 2015, 25 (04): : 323 - 334
  • [8] Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells
    Biswas, Dhruba
    Jiang, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (02)
  • [9] Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells
    Kim, Young Mi
    Kang, Yun Gyeong
    Park, So Hee
    Han, Myung-Kwan
    Kim, Jae Ho
    Shin, Ji Won
    Shin, Jung-Woog
    STEM CELL RESEARCH & THERAPY, 2017, 8
  • [10] Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells
    Young Mi Kim
    Yun Gyeong Kang
    So Hee Park
    Myung-Kwan Han
    Jae Ho Kim
    Ji Won Shin
    Jung-Woog Shin
    Stem Cell Research & Therapy, 8