Blow-up of solutions to the DGH equation

被引:68
|
作者
Zhou, Yong [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
best constant; convolution problem; integrable equation; singularity;
D O I
10.1016/j.jfa.2007.04.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, firstly we find best constants for two convolution problems on the unit circle via a variational method. Then we apply the best constants on a nonlinear integrable shallow water equation (the DGH equation) to give sufficient conditions on the initial data, which guarantee finite time singularity formation for the corresponding solutions. Finally, we discuss the blow-up phenomena for the nonperiodic case. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 248
页数:22
相关论文
共 50 条
  • [1] A New Blow-Up Criterion for the DGH Equation
    Zhu, Mingxuan
    Jin, Liangbing
    Jiang, Zaihong
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [2] Blow-up Phenomena and Persistence Properties of Solutions to the Two-Component DGH Equation
    Zhai, Panpan
    Guo, Zhengguang
    Wang, Weiming
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [3] BLOW UP AND PROPAGATION SPEED OF SOLUTIONS TO THE DGH EQUATION
    Zhou, Yong
    Guo, Zhengguang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (03): : 657 - 670
  • [4] Existence and blow-up of solutions of a pseudoparabolic equation
    Yushkov, E. V.
    [J]. DIFFERENTIAL EQUATIONS, 2011, 47 (02) : 291 - 295
  • [5] ON THE BLOW-UP OF SOLUTIONS FOR THE b-EQUATION
    Kodzha, M.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2012, 81 (01): : 117 - 126
  • [6] Blow-up of solutions of a quasilinear parabolic equation
    Suzuki, Ryuichi
    Umeda, Noriaki
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (02) : 425 - 448
  • [7] Blow-up of solutions of the nonlinear Sobolev equation
    Cao, Yang
    Nie, Yuanyuan
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 28 : 1 - 6
  • [8] Blow-up of solutions for the damped Boussinesq equation
    Polat, N
    Kaya, D
    Tutalar, HI
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (07): : 473 - 476
  • [9] BLOW-UP OF SOLUTIONS TO A NONLINEAR WAVE EQUATION
    Georgiev, Svetlin Georgiev
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [10] Existence and blow-up of solutions of a pseudoparabolic equation
    E. V. Yushkov
    [J]. Differential Equations, 2011, 47