Phase resolved observation of spin wave modes in antidot lattices

被引:10
|
作者
Gross, Felix [1 ]
Zelent, Mateusz [2 ]
Gangwar, Ajay [3 ]
Mamica, Slawomir [2 ]
Gruszecki, Pawel [2 ]
Werner, Matthias [1 ]
Schuetz, Gisela [1 ]
Weigand, Markus [4 ]
Goering, Eberhard J. [1 ]
Back, Christian H. [5 ]
Krawczyk, Maciej [2 ]
Graefe, Joachim [1 ]
机构
[1] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany
[2] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[3] Univ Regensburg, Dept Phys, D-93053 Regensburg, Germany
[4] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany
[5] Tech Univ Munich, D-85748 Garching, Germany
关键词
Band structure - Antennas;
D O I
10.1063/5.0045142
中图分类号
O59 [应用物理学];
学科分类号
摘要
Antidot lattices have proven to be a powerful tool for spin wave band structure manipulation. Utilizing time-resolved scanning transmission x-ray microscopy, we are able to experimentally image edge-localized spin wave modes in an antidot lattice with a lateral confinement down to < 80 nm x 130 nm. At higher frequencies, spin wave dragonfly patterns formed by the demagnetizing structures of the antidot lattice are excited. Evaluating their relative phase with respect to the propagating mode within the antidot channel reveals that the dragonfly modes are not directly excited by the antenna but need the propagating mode as an energy mediator. Furthermore, micromagnetic simulations reveal that additional dispersion branches exist for a tilted external field geometry. These branches correspond to asymmetric spin wave modes that cannot be excited in a non-tilted field geometry due to the symmetry restriction. In addition to the band having a negative slope, these asymmetric modes also cause an unexpected transformation of the band structure, slightly reaching into the otherwise empty bandgap between the low frequency edge modes and the fundamental mode. The presented phase resolved investigation of spin waves is a crucial step for spin wave manipulation in magnonic crystals.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Magnonic spin-wave modes in CoFeB antidot lattices
    Ulrichs, Henning
    Lenk, Benjamin
    Muenzenberg, Markus
    APPLIED PHYSICS LETTERS, 2010, 97 (09)
  • [2] Spin-wave modes and band structure of rectangular CoFeB antidot lattices
    Lenk, Benjamin
    Abeling, Nils
    Panke, Jelena
    Muenzenberg, Markus
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)
  • [3] Spin qubits in antidot lattices
    Pedersen, Jesper
    Flindt, Christian
    Mortensen, Niels Asger
    Jauho, Antti-Pekka
    PHYSICAL REVIEW B, 2008, 77 (04):
  • [4] Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering
    Gubbiotti, G.
    Montoncello, F.
    Tacchi, S.
    Madami, M.
    Carlotti, G.
    Giovannini, L.
    Ding, J.
    Adeyeye, A. O.
    APPLIED PHYSICS LETTERS, 2015, 106 (26)
  • [5] Observation of Spin-Wave Moire′ Edge and Cavity Modes in Twisted Magnetic Lattices
    Wang, Hanchen
    Madami, Marco
    Chen, Jilei
    Jia, Hao
    Zhang, Yu
    Yuan, Rundong
    Wang, Yizhan
    He, Wenqing
    Sheng, Lutong
    Zhang, Yuelin
    Wang, Jinlong
    Liu, Song
    Shen, Ka
    Yu, Guoqiang
    Han, Xiufeng
    Yu, Dapeng
    Ansermet, Jean-Philippe
    Gubbiotti, Gianluca
    Yu, Haiming
    PHYSICAL REVIEW X, 2023, 13 (02)
  • [6] Magnonic minibands in antidot lattices with large spin-wave propagation velocities
    Neusser, S.
    Duerr, G.
    Tacchi, S.
    Madami, M.
    Sokolovskyy, M. L.
    Gubbiotti, G.
    Krawczyk, M.
    Grundler, D.
    PHYSICAL REVIEW B, 2011, 84 (09)
  • [7] Spatial control of spin-wave modes in Ni80Fe20 antidot lattices by embedded Co nanodisks
    Duerr, G.
    Madami, M.
    Neusser, S.
    Tacchi, S.
    Gubbiotti, G.
    Carlotti, G.
    Grundler, D.
    APPLIED PHYSICS LETTERS, 2011, 99 (20)
  • [8] Screening and collective modes in disordered graphene antidot lattices
    Yuan, Shengjun
    Jin, Fengping
    Roldan, Rafael
    Jauho, Antti-Pekka
    Katsnelson, M. I.
    PHYSICAL REVIEW B, 2013, 88 (19)
  • [9] Strongly localized magnetization modes in permalloy antidot lattices
    Sklenar, J.
    Bhat, V. S.
    DeLong, L. E.
    Heinonen, O.
    Ketterson, J. B.
    APPLIED PHYSICS LETTERS, 2013, 102 (15)
  • [10] Effects of antidot shape on the spin wave spectra of two-dimensional Ni80Fe20 antidot lattices
    Mandal, Ruma
    Laha, Pinaki
    Das, Kaustuv
    Saha, Susmita
    Barman, Saswati
    Raychaudhuri, A. K.
    Barman, Anjan
    APPLIED PHYSICS LETTERS, 2013, 103 (26)