RELATIONSHIP BETWEEN QUANTUM AND POISSON STRUCTURES OF ODD DIMENSIONAL EUCLIDEAN SPACES

被引:2
|
作者
Oh, Sei-Qwon [1 ]
Park, Mi-Yeon [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
Poisson algebra; Quantized euclidean space; Topological quotient; DIXMIER-MOEGLIN EQUIVALENCE; N-SPACE; ALGEBRAS;
D O I
10.1080/00927870903114987
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the prime and primitive spectra of the multiparameter quantized algebra of odd-dimensional euclidean spaces are homeomorphic to the Poisson prime and Poisson primitive spectra of the multiparameter Poisson algebra of odd-dimensional euclidean spaces in the case when the multiplicative subgroup of a base field generated by the parameters is torsion free. As a corollary, it is shown that the prime and primitive spectra of the multiparameter quantized algebra of odd-dimensional euclidean spaces are topological quotients of the prime and maximal spectra of the corresponding commutative polynomial ring.
引用
收藏
页码:3333 / 3346
页数:14
相关论文
共 50 条