A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations

被引:26
|
作者
Dieval, C. [1 ,2 ]
Kallio, E. [3 ]
Barabash, S. [1 ]
Stenberg, G. [1 ]
Nilsson, H. [1 ]
Futaana, Y. [1 ]
Holmstrom, M. [1 ]
Fedorov, A. [4 ]
Frahm, R. A. [5 ]
Jarvinen, R. [3 ]
Brain, D. A. [6 ]
机构
[1] Swedish Inst Space Phys, SE-98128 Kiruna, Sweden
[2] Lulea Tech Univ, Div Space Technol, Dept Comp Sci Elect & Space Engn, Kiruna, Sweden
[3] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[4] Inst Rech Astrophys & Planetol, Toulouse, France
[5] SW Res Inst, San Antonio, TX USA
[6] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
关键词
SOLAR-WIND INTERACTION; CRUSTAL MAGNETIC-FIELD; MARTIAN ATMOSPHERE; ASPERA-3; MISSION; MODEL; ATOMS;
D O I
10.1029/2012JA017537
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the data from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) experiment on board Mars Express and hybrid simulations, we have investigated the entry of protons into the Martian induced magnetosphere. We discuss one orbit on the dayside with observations of significant proton fluxes at altitudes down to 260 km on 27 February 2004. The protons observed below the induced magnetosphere boundary at an altitude of less than 700 km have energies of a few keV, travel downward, and precipitate onto the atmosphere. The measured energy flux and particle flux are 10(8)-10(9) eV cm(-2) s(-1) and 10(5)-10(6) H+ cm(-2) s(-1), respectively. The proton precipitation occurs because the Martian magnetosheath is small with respect to the heated proton gyroradius in the subsolar region. The data suggest that the precipitation is not permanent but may occur when there are transient increases in the magnetosheath proton temperature. The higher-energy protons penetrate deeper because of their larger gyroradii. The proton entry into the induced magnetosphere is simulated using a hybrid code. A simulation using a fast solar wind as input can reproduce the high energies of the observed precipitating protons. The model shows that the precipitating protons originate from both the solar wind and the planetary exosphere. The precipitation extends over a few thousand kilometers along the orbit of the spacecraft. The proton precipitation does not necessarily correlate with the crustal magnetic anomalies.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Observations of the Proton Aurora on Mars With SPICAM on Board Mars Express
    Ritter, B.
    Gerard, J-C.
    Hubert, B.
    Rodriguez, L.
    Montmessin, F.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (02) : 612 - 619
  • [2] A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations
    Dieval, C.
    Stenberg, G.
    Nilsson, H.
    Barabash, S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (05) : 1972 - 1983
  • [3] Hybrid simulations of proton precipitation patterns onto the upper atmosphere of Mars
    Catherine Diéval
    Esa Kallio
    Gabriella Stenberg
    Stas Barabash
    Riku Jarvinen
    [J]. Earth, Planets and Space, 2012, 64 : 121 - 134
  • [4] Hybrid simulations of proton precipitation patterns onto the upper atmosphere of Mars
    Dieval, Catherine
    Kallio, Esa
    Stenberg, Gabriella
    Barabash, Stas
    Jarvinen, Riku
    [J]. EARTH PLANETS AND SPACE, 2012, 64 (02): : 121 - 134
  • [5] A study on Electron Oscillations in the Magnetosheath of Mars with Mars Express observations
    de Souza, Adriane M.
    Echer, Ezequiel
    Bolzam, Mauricio J. A.
    Fraenz, Markus
    [J]. LIVING AROUND ACTIVE STARS, 2017, 12 (S328): : 230 - 232
  • [6] Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS)
    Paetzold, M.
    Haeusler, B.
    Tyler, G. L.
    Andert, T.
    Asmar, S. W.
    Bird, M. K.
    Dehant, V.
    Hinson, D. P.
    Rosenblatt, P.
    Simpson, R. A.
    Tellmann, S.
    Withers, P.
    Beuthe, M.
    Efimov, A. I.
    Hahn, M.
    Kahan, D.
    Le Maistre, S.
    Oschlisniok, J.
    Peter, K.
    Remus, S.
    [J]. PLANETARY AND SPACE SCIENCE, 2016, 127 : 44 - 90
  • [7] The magnetic field near Mars: A comparison between a hybrid model, Mars Global Surveyor and Mars Express observations
    Frilund, H.
    Kallio, E.
    Yamauchi, M.
    Fedorov, A.
    Janhunen, P.
    Lundin, R.
    Sauvaud, J. -A.
    Barabash, S.
    [J]. PLANETARY AND SPACE SCIENCE, 2008, 56 (06) : 828 - 831
  • [8] Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS)
    Withers, Paul
    Fillingim, M. O.
    Lillis, R. J.
    Haeusler, B.
    Hinson, D. P.
    Tyler, G. L.
    Paetzold, M.
    Peter, K.
    Tellmann, S.
    Witasse, O.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
  • [9] Oxygen Ion Energization at Mars: Comparison of MAVEN and Mars Express Observations to Global Hybrid Simulation
    Jarvinen, R.
    Brain, D. A.
    Modolo, R.
    Fedorov, A.
    Holmstrom, M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (02) : 1678 - 1689
  • [10] Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express
    Gerard, J. -C.
    Soret, L.
    Libert, L.
    Lundin, R.
    Stiepen, A.
    Radioti, A.
    Bertaux, J. -L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (08) : 6749 - 6765