ANOMALOUS DISSIPATION IN A STOCHASTIC INVISCID DYADIC MODEL

被引:16
|
作者
Barbato, David [1 ]
Flandoli, Franco [2 ]
Morandin, Francesco [3 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Appl, I-35121 Padua, Italy
[2] Univ Pisa, Dipartimento Matemat Appl, I-56127 Pisa, Italy
[3] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
来源
ANNALS OF APPLIED PROBABILITY | 2011年 / 21卷 / 06期
关键词
SPDE; shell models; dyadic model; fluid dynamics; anomalous dissipation; blow-up; Girsanov's transform; multiplicative noise; FINITE-TIME; BLOW-UP; ENERGY; UNIQUENESS;
D O I
10.1214/11-AAP768
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A stochastic version of an inviscid dyadic model of turbulence, with multiplicative noise, is proved to exhibit energy dissipation in spite of the formal energy conservation. As a consequence, global regular solutions cannot exist. After some reductions, the main tool is the escape bahavior at infinity of a certain birth and death process.
引用
下载
收藏
页码:2424 / 2446
页数:23
相关论文
共 50 条
  • [1] UNIQUENESS FOR A STOCHASTIC INVISCID DYADIC MODEL
    Barbato, D.
    Flandoli, F.
    Morandin, F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (07) : 2607 - 2617
  • [2] Uniqueness for an inviscid stochastic dyadic model on a tree
    Bianchi, Luigi Amedeo
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 12
  • [3] Structure Function and Fractal Dissipation for an Intermittent Inviscid Dyadic Model
    Luigi Amedeo Bianchi
    Francesco Morandin
    Communications in Mathematical Physics, 2017, 356 : 231 - 260
  • [4] Structure Function and Fractal Dissipation for an Intermittent Inviscid Dyadic Model
    Bianchi, Luigi Amedeo
    Morandin, Francesco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (01) : 231 - 260
  • [5] Stochastic inviscid shell models: well-posedness and anomalous dissipation
    Barbato, David
    Morandin, Francesco
    NONLINEARITY, 2013, 26 (07) : 1919 - 1943
  • [6] ENERGY DISSIPATION AND SELF-SIMILAR SOLUTIONS FOR AN UNFORCED INVISCID DYADIC MODEL
    Barbato, D.
    Flandoli, F.
    Morandin, F.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (04) : 1925 - 1946
  • [7] Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model
    Andreis, Luisa
    Barbato, David
    Collet, Francesca
    Formentin, Marco
    Provenzano, Luigi
    NONLINEARITY, 2016, 29 (03) : 1156 - 1169
  • [8] A theorem of uniqueness for an inviscid dyadic model
    Barbato, D.
    Flandoli, Franco
    Morandin, Francesco
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) : 525 - 528
  • [9] AN INVISCID DYADIC MODEL OF TURBULENCE: THE GLOBAL ATTRACTOR
    Cheskidov, Alexey
    Friedlander, Susan
    Pavlovic, Natasa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (03) : 781 - 794
  • [10] Anomalous Dissipation and Energy Cascade in 3D Inviscid Flows
    Dascaliuc, R.
    Grujic, Z.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (03) : 757 - 770