Hybrid Deep Reinforcement Learning for Pairs Trading

被引:10
|
作者
Kim, Sang-Ho [1 ]
Park, Deog-Yeong [1 ]
Lee, Ki-Hoon [1 ]
机构
[1] Kwangwoon Univ, Sch Comp & Informat Engn, 20 Kwangwoon Ro, Seoul 01897, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 03期
基金
新加坡国家研究基金会;
关键词
algorithmic trading; pairs trading; deep learning; reinforcement learning; TIME-SERIES; REPRESENTATION; COINTEGRATION;
D O I
10.3390/app12030944
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pairs trading is an investment strategy that exploits the short-term price difference (spread) between two co-moving stocks. Recently, pairs trading methods based on deep reinforcement learning have yielded promising results. These methods can be classified into two approaches: (1) indirectly determining trading actions based on trading and stop-loss boundaries and (2) directly determining trading actions based on the spread. In the former approach, the trading boundary is completely dependent on the stop-loss boundary, which is certainly not optimal. In the latter approach, there is a risk of significant loss because of the absence of a stop-loss boundary. To overcome the disadvantages of the two approaches, we propose a hybrid deep reinforcement learning method for pairs trading called HDRL-Trader, which employs two independent reinforcement learning networks; one for determining trading actions and the other for determining stop-loss boundaries. Furthermore, HDRL-Trader incorporates novel techniques, such as dimensionality reduction, clustering, regression, behavior cloning, prioritized experience replay, and dynamic delay, into its architecture. The performance of HDRL-Trader is compared with the state-of-the-art reinforcement learning methods for pairs trading (P-DDQN, PTDQN, and P-Trader). The experimental results for twenty stock pairs in the Standard & Poor's 500 index show that HDRL-Trader achieves an average return rate of 82.4%, which is 25.7%P higher than that of the second-best method, and yields significantly positive return rates for all stock pairs.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Pairs Trading with a Double Deep Q-Network
    Brim, Andrew
    [J]. 2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 222 - 227
  • [2] Nonlinear relationships in soybean commodities Pairs trading-test by deep reinforcement learning
    Liu, Jianhe
    Lu, Luze
    Zong, Xiangyu
    Xie, Baao
    [J]. FINANCE RESEARCH LETTERS, 2023, 58
  • [3] Structural break-aware pairs trading strategy using deep reinforcement learning
    Lu, Jing-You
    Lai, Hsu-Chao
    Shih, Wen-Yueh
    Chen, Yi-Feng
    Huang, Shen-Hang
    Chang, Hao-Han
    Wang, Jun-Zhe
    Huang, Jiun-Long
    Dai, Tian-Shyr
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (03): : 3843 - 3882
  • [4] Deep reinforcement learning for pairs trading: Evidence from China black series futures
    Guo, Minjia
    Liu, Jianhe
    Luo, Ziping
    Han, Xiao
    [J]. INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2024, 93 : 981 - 993
  • [5] Structural break-aware pairs trading strategy using deep reinforcement learning
    Jing-You Lu
    Hsu-Chao Lai
    Wen-Yueh Shih
    Yi-Feng Chen
    Shen-Hang Huang
    Hao-Han Chang
    Jun-Zhe Wang
    Jiun-Long Huang
    Tian-Shyr Dai
    [J]. The Journal of Supercomputing, 2022, 78 : 3843 - 3882
  • [6] Optimizing the Pairs-Trading Strategy Using Deep Reinforcement Learning with Trading and Stop-Loss Boundaries
    Kim, Taewook
    Kim, Ha Young
    [J]. COMPLEXITY, 2019, 2019
  • [7] An application of deep reinforcement learning to algorithmic trading
    Theate, Thibaut
    Ernst, Damien
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 173
  • [8] Deep differentiable reinforcement learning and optimal trading
    Jaisson, Thibault
    [J]. QUANTITATIVE FINANCE, 2022, 22 (08) : 1429 - 1443
  • [9] Deep Reinforcement Learning to Automate Cryptocurrency Trading
    Mahayana, Dimitri
    Shan, Elbert
    Fadhl'Abbas, Muhammad
    [J]. 2022 12TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET 2022), 2022, : 36 - 41
  • [10] A Stock Trading Strategy Based on Deep Reinforcement Learning
    Khemlichi, Firdaous
    Chougrad, Hiba
    Khamlichi, Youness Idrissi
    El Boushaki, Abdessamad
    Ben Ali, Safae El Haj
    [J]. ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 920 - 928