A large deviations bound for the Teichmuller flow on the moduli space of abelian differentials

被引:3
|
作者
Araujo, Vitor [1 ]
Bufetov, Alexander I. [2 ,3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
[2] Rice Univ, Dept Math, Houston, TX 77251 USA
[3] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
基金
美国国家科学基金会;
关键词
INTERVAL EXCHANGE TRANSFORMATIONS;
D O I
10.1017/S0143385710000349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Large deviation rates are obtained for suspension flows over symbolic dynamical systems with a countable alphabet. We use a method employed previously by the first author [Large deviations bound for semiflows over a non-uniformly expanding base. Bull. Braz. Math. Soc. (N.S.) 38(3) (2007), 335-376], which follows that of Young [Some large deviation results for dynamical systems. Trans. Amer. Math. Soc. 318(2) (1990), 525-543]. As a corollary of the main results, we obtain a large deviation bound for the Teichmuller flow on the moduli space of abelian differentials, extending earlier work of Athreya [Quantitative recurrence and large deviations for Teichmuller geodesic flow. Geom. Dedicata 119 (2006), 121-140].
引用
收藏
页码:1043 / 1071
页数:29
相关论文
共 50 条