Background Knowledge in Schema Matching: Strategy vs. Data

被引:5
|
作者
Portisch, Jan [1 ,2 ]
Hladik, Michael [3 ]
Paulheim, Heiko [1 ]
机构
[1] Univ Mannheim, Data & Web Sci Grp, Mannheim, Germany
[2] One Domain Model, SAP SE Business Technol Platform, Walldorf, Germany
[3] SAP SE Business Proc Intelligence, Walldorf, Germany
来源
SEMANTIC WEB - ISWC 2021 | 2021年 / 12922卷
关键词
Schema matching; Ontology matching; Background knowledge; Knowledge graphs; Knowledge graph embeddings; Data integration;
D O I
10.1007/978-3-030-88361-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of external background knowledge can be beneficial for the task of matching schemas or ontologies automatically. In this paper, we exploit six general-purpose knowledge graphs as sources of background knowledge for the matching task. The background sources are evaluated by applying three different exploitation strategies. We find that explicit strategies still outperform latent ones and that the choice of the strategy has a greater impact on the final alignment than the actual background dataset on which the strategy is applied. While we could not identify a universally superior resource, BabelNet achieved consistently good results. Our best matcher configuration with BabelNet performs very competitively when compared to other matching systems even though no dataset-specific optimizations were made.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 50 条
  • [1] SKM: A schema matching model based on schema structure and known matching knowledge
    Shen, De-Rong
    Yu, En-Yun
    Zhang, Xu
    Kou, Yue
    Nie, Tie-Zheng
    Yu, Ge
    [J]. Ruan Jian Xue Bao/Journal of Software, 2009, 20 (02): : 327 - 338
  • [2] The use of background matching vs. masquerade for camouflage in cuttlefish Sepia officinalis
    Buresch, Kendra C.
    Maethger, Lydia M.
    Allen, Justine J.
    Bennice, Chelsea
    Smith, Neal
    Schram, Jonathan
    Chiao, Chuan-Chin
    Chubb, Charles
    Hanlon, Roger T.
    [J]. VISION RESEARCH, 2011, 51 (23-24) : 2362 - 2368
  • [3] Data vs. knowledge mining: A crossing of theories
    Rubin, SH
    [J]. SMC '97 CONFERENCE PROCEEDINGS - 1997 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: CONFERENCE THEME: COMPUTATIONAL CYBERNETICS AND SIMULATION, 1997, : 1379 - 1384
  • [4] Schema-Matching with Data Dictionaries
    Coen, Gary
    Xue, Ping
    [J]. NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, 2010, 5723 : 62 - 78
  • [5] Task Topic Knowledge vs. Background Domain Knowledge: Impact of Two Types of Knowledge on User Search Performance
    Zhang, Xiangmin
    Liu, Jingjing
    Cole, Michael
    [J]. ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, 2013, 206 : 179 - 191
  • [6] The Interaction Between Schema Matching and Record Matching in Data Integration
    Gu, Binbin
    Li, Zhixu
    Zhang, Xiangliang
    Liu, An
    Liu, Guanfeng
    Zheng, Kai
    Zhao, Lei
    Zhou, Xiaofang
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (01) : 186 - 199
  • [7] GSMA: A structural matching algorithm for schema matching in data warehousing
    Cheng, W
    Sun, YF
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 408 - 411
  • [8] STRATEGY vs. ENTREPRENEURSHIP
    Ireland, R. Duane
    [J]. STRATEGIC ENTREPRENEURSHIP JOURNAL, 2007, 1 (1-2) : 7 - 10
  • [9] KNOWLEDGE VS. PEDANTRY
    Abrams, Sam
    [J]. NEW YORK REVIEW OF BOOKS, 2010, 57 (14) : 94 - +
  • [10] Review of Ontology Matching with Background Knowledge
    Husein, Nne Gartina
    Akbar, Saiful
    Sitohang, Benhard
    Azizah, Fazat Nur
    [J]. PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2016,