Soliton and singular solutions to the Schrodinger-Hartree equation

被引:1
|
作者
Genev, Hristo [1 ]
Venkov, George [2 ]
机构
[1] Sofia Univ St Kl Ohridski, Fac Math & Informat, Sofia, Bulgaria
[2] Techn Univ Sofia, Fac Appl Math & Informat, Sofia, Bulgaria
关键词
Schrodinger-Hartree equation; solitary waves; blow-up solutions; variational methods;
D O I
10.1063/1.3515573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove the existence of solitary wave solutions and give conditions for formation of singularities for the focusing time-dependent Schrodinger-Hartree equation in R-n.
引用
收藏
页码:107 / +
页数:2
相关论文
共 50 条
  • [1] SOLITON AND BLOW-UP SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-HARTREE EQUATION
    Genev, Hristo
    Venkov, George
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (05): : 903 - 923
  • [2] DECAY OF SOME SOLUTIONS WITH POSITIVE ENERGY OF THE SCHRODINGER-HARTREE EQUATION
    DIAS, JP
    FIGUEIRA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (09): : 381 - 384
  • [3] ON THE CAUCHY PROBLEM FOR THE SCHRODINGER-HARTREE EQUATION
    Feng, Binhua
    Yuan, Xiangxia
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2015, 4 (04): : 431 - 445
  • [4] On a nonlinear evolution Schrodinger-Hartree equation
    Nasibov, Sh. M.
    DOKLADY MATHEMATICS, 2006, 74 (02) : 704 - 707
  • [5] DECAY IN ENERGY SPACE FOR THE SOLUTIONS OF GENERALIZED SCHRODINGER-HARTREE EQUATION PERTURBED BY A POTENTIAL
    Nikolova, Elena
    Tarulli, Mirko
    Venkov, George
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2022, 75 (11): : 1559 - 1572
  • [6] BLOWUP RESULTS AND CONCENTRATION IN FOCUSING SCHRODINGER-HARTREE EQUATION
    Xie, Yingying
    Su, Jian
    Mei, Liquan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (08) : 5001 - 5017
  • [7] Stability of standing waves for the fractional Schrodinger-Hartree equation
    Feng, Binhua
    Zhang, Honghong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) : 352 - 364
  • [8] On a nonlinear Schrodinger-Hartree evolution equation in the critical case
    Nasibov, Sh. M.
    DOKLADY MATHEMATICS, 2009, 80 (01) : 606 - 609
  • [9] ON THE MANAGEMENT FOURTH-ORDER SCHRODINGER-HARTREE EQUATION
    Banquet, Carlos
    Villamizar-Roa, Elder J.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 865 - 889
  • [10] Soliton Solutions for a Singular Schrodinger Equation with Any Growth Exponents
    Liu, Jiayin
    Liu, Duchao
    Zhao, Peihao
    ACTA APPLICANDAE MATHEMATICAE, 2017, 148 (01) : 179 - 199