Nonlinear model predictive torque control of PMSMs for high performance applications

被引:32
|
作者
Englert, Tobias [1 ]
Graichen, Knut [1 ]
机构
[1] Ulm Univ, Inst Measurement Control & Microtechnol, D-89081 Ulm, Germany
关键词
Nonlinear MPC; Electric machine control; Permanent magnet synchronous machine; Nonlinear constraints; Augmented Lagrangian method; Gradient method; Embedded optimization; AUGMENTED LAGRANGIAN METHOD; MAGNET SYNCHRONOUS MOTOR; POWER ELECTRONICS; DRIVES;
D O I
10.1016/j.conengprac.2018.08.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This contribution presents a nonlinear model predictive control (MPC) scheme for the torque control of permanent magnet synchronous machines. The control scheme is based on the nonlinear dq-model including current-dependent inductivities and provides a desired torque in an energy-efficient way while accounting for constraints on the DC link current, phase currents, and hexagonal voltage constraints. The MPC algorithm uses an augmented Lagrangian method in combination with a real-time gradient method to allow for a computationally efficient solution. Experimental results for a standard industrial drive show the performance, robustness, and computational efficiency of the MPC with a sampling time of 500 mu s.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 50 条
  • [1] Nonlinear model predictive torque control and setpoint computation of induction machines for high performance applications
    Englert, Tobias
    Graichen, Knut
    [J]. CONTROL ENGINEERING PRACTICE, 2020, 99
  • [2] Model Predictive Torque Control for Torque Ripple Compensation in Variable-Speed PMSMs
    Mora, Andres
    Orellana, Alvaro
    Juliet, Jorge
    Cardenas, Roberto
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (07) : 4584 - 4592
  • [3] A Comparison on Finite-Set Model Predictive Torque Control Schemes for PMSMs
    Sandre-Hernandez, Omar
    Rangel-Magdaleno, Jose
    Morales-Caporal, Roberto
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (10) : 8838 - 8847
  • [4] A Fixed-Point Iteration Scheme for Model Predictive Torque Control of PMSMs
    Englert, Tobias
    Graichen, Knut
    [J]. IFAC PAPERSONLINE, 2018, 51 (20): : 568 - 573
  • [5] Load Angle Limitation for PMSMs with Sequential Model Predictive Direct Torque Control
    Zhang, Kai
    Fan, Mingdi
    Yang, Yong
    He, Liqun
    Li, Xiaohui
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON PREDICTIVE CONTROL OF ELECTRICAL DRIVES AND POWER ELECTRONICS (PRECEDE 2019), 2019, : 32 - 37
  • [6] An High Performance Direct Torque Control Method with PWM Approach of PMSMs
    Kwak, YunChang
    Ahn, Jin-Woo
    Lee, Dong-Hee
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2014, : 61 - 66
  • [7] Fast Response Model Predictive Torque and Flux Control With Low Calculation Effort for PMSMs
    Wang, Yuanlin
    Xie, Wei
    Wang, Xiaocan
    Yang, Weibin
    Dou, Manfeng
    Song, Shoujun
    Gerling, Dieter
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (10) : 5531 - 5540
  • [8] Finite-Control-Set Model Predictive Direct Torque Control of PMSMs with Virtual Space Vectors
    Wang, Tianshi
    Guo, Youguang
    Zhu, Jianguo
    [J]. PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 1427 - 1430
  • [9] Nonlinear Model Predictive Torque Control for IC Engines
    Kang, Mingxin
    Shen, Tielong
    [J]. 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 804 - 809
  • [10] Optimal control of PMSMs using model predictive control
    Matsutani, Shintaro
    Zanma, Tadanao
    Kawai, Kenji
    Ishida, Muneaki
    Imura, Akihiro
    Fujitsuna, Masami
    [J]. IECON 2008: 34TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-5, PROCEEDINGS, 2008, : 1252 - +