Dynamic Word Embeddings

被引:0
|
作者
Bamler, Robert [1 ]
Mandt, Stephan [1 ]
机构
[1] Disney Res, 4720 Forbes Ave, Pittsburgh, PA 15213 USA
关键词
MIRROR DESCENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a probabilistic language model for time-stamped text data which tracks the semantic evolution of individual words over time. The model represents words and contexts by latent trajectories in an embedding space. At each moment in time, the embedding vectors are inferred from a probabilistic version of word2vec (Mikolov et al., 2013b). These embedding vectors are connected in time through a latent diffusion process. We describe two scalable variational inference algorithms-skip-gram smoothing and skip-gram filtering-that allow us to train the model jointly over all times; thus learning on all data while simultaneously allowing word and context vectors to drift. Experimental results on three different corpora demonstrate that our dynamic model infers word embedding trajectories that are more interpretable and lead to higher predictive likelihoods than competing methods that are based on static models trained separately on time slices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dynamic Word Embeddings for Evolving Semantic Discovery
    Yao, Zijun
    Sun, Yifan
    Ding, Weicong
    Rao, Nikhil
    Xiong, Hui
    [J]. WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 673 - 681
  • [2] DWE-Med: Dynamic Word Embeddings for Medical Domain
    Jha, Kishlay
    Xun, Guangxu
    Gopalakrishnan, Vishrawas
    Zhang, Aidong
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2019, 13 (02)
  • [3] Learning Acoustic Word Embeddings With Dynamic Time Warping Triplet Networks
    Shitov, Denis
    Pirogova, Elena
    Wysocki, Tadeusz A.
    Lech, Margaret
    [J]. IEEE ACCESS, 2020, 8 : 103327 - 103338
  • [4] Socialized Word Embeddings
    Zeng, Ziqian
    Yin, Yichun
    Song, Yangqiu
    Zhang, Ming
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3915 - 3921
  • [5] Adaptive map matching based on dynamic word embeddings for indoor positioning
    Lan, Xinyue
    Zhang, Lijia
    Xiao, Zhuoling
    Yan, Bo
    [J]. NEUROCOMPUTING, 2023, 553
  • [6] Context-Aware Dynamic Word Embeddings for Aspect Term Extraction
    Xu, Jingyun
    Xie, Jiayuan
    Cai, Yi
    Lin, Zehang
    Leung, Ho-Fung
    Li, Qing
    Chua, Tat-Seng
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (01) : 144 - 156
  • [7] Urdu Word Embeddings
    Haider, Samar
    [J]. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 964 - 968
  • [8] isiZulu Word Embeddings
    Dlamini, Sibonelo
    Jembere, Edgar
    Pillay, Anban
    van Niekerk, Brett
    [J]. 2021 CONFERENCE ON INFORMATION COMMUNICATIONS TECHNOLOGY AND SOCIETY (ICTAS), 2021, : 121 - 126
  • [9] Topical Word Embeddings
    Liu, Yang
    Liu, Zhiyuan
    Chua, Tat-Seng
    Sun, Maosong
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2418 - 2424
  • [10] Bias in Word Embeddings
    Papakyriakopoulos, Orestis
    Hegelich, Simon
    Serrano, Juan Carlos Medina
    Marco, Fabienne
    [J]. FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, 2020, : 446 - 457