Learning to Share Visual Appearance for Multiclass Object Detection

被引:0
|
作者
Salakhutdinov, Ruslan [1 ]
Torralba, Antonio [1 ]
Tenenbaum, Josh [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a hierarchical classification model that allows rare objects to borrow statistical strength from related objects that have many training examples. Unlike many of the existing object detection and recognition systems that treat different classes as unrelated entities, our model learns both a hierarchy for sharing visual appearance across 200 object categories and hierarchical parameters. Our experimental results on the challenging object localization and detection task demonstrate that the proposed model substantially improves the accuracy of the standard single object detectors that ignore hierarchical structure altogether.
引用
收藏
页码:1481 / 1488
页数:8
相关论文
共 50 条
  • [1] Sharing visual features for multiclass and multiview object detection
    Torralba, Antonio
    Murphy, Kevin P.
    Freeman, William T.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (05) : 854 - 869
  • [2] ADAPTIVE APPEARANCE LEARNING FOR VISUAL OBJECT TRACKING
    Khan, Zulfiqar Hasan
    Gu, Irene Yu-Hua
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1413 - 1416
  • [3] Reinforcement Learning for Visual Object Detection
    Mathe, Stefan
    Pirinen, Aleksis
    Sminchisescu, Cristian
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2894 - 2902
  • [4] Representation Learning for Visual Object Tracking by Masked Appearance Transfer
    Zhao, Haojie
    Wang, Dong
    Lu, Huchuan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 18696 - 18705
  • [5] Shared features for multiclass object detection
    Torralba, Antonio
    Murphy, Kevin P.
    Freeman, William T.
    TOWARD CATEGORY-LEVEL OBJECT RECOGNITION, 2006, 4170 : 345 - +
  • [6] Learning fusion strategies for visual object detection
    Paletta, L
    Rome, E
    2000 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2000), VOLS 1-3, PROCEEDINGS, 2000, : 1446 - 1452
  • [7] Learning to Match Anchors for Visual Object Detection
    Zhang, Xiaosong
    Wan, Fang
    Liu, Chang
    Ji, Xiangyang
    Ye, Qixiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (06) : 3096 - 3109
  • [8] Appearance-based visual learning and object recognition with illumination invariance
    Ohba, K
    Sato, Y
    Ikeuchi, K
    MACHINE VISION AND APPLICATIONS, 2000, 12 (04) : 189 - 196
  • [9] Appearance-based visual learning and object recognition with illumination invariance
    Kohtaro Ohba
    Yoichi Sato
    Katsusi Ikeuchi
    Machine Vision and Applications, 2000, 12 : 189 - 196
  • [10] Structural Kernel Learning for Large Scale Multiclass Object Co-Detection
    Hayder, Zeeshan
    He, Xuming
    Salzmann, Mathieu
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2632 - 2640